Fonctionnelles de Ginzburg-Landau et espaces de configurations de particules positives et négatives

L. Almeida; F. Bethuel

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-11

How to cite

top

Almeida, L., and Bethuel, F.. "Fonctionnelles de Ginzburg-Landau et espaces de configurations de particules positives et négatives." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-11. <http://eudml.org/doc/112131>.

@article{Almeida1995-1996,
author = {Almeida, L., Bethuel, F.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-11},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Fonctionnelles de Ginzburg-Landau et espaces de configurations de particules positives et négatives},
url = {http://eudml.org/doc/112131},
year = {1995-1996},
}

TY - JOUR
AU - Almeida, L.
AU - Bethuel, F.
TI - Fonctionnelles de Ginzburg-Landau et espaces de configurations de particules positives et négatives
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 11
LA - fre
UR - http://eudml.org/doc/112131
ER -

References

top
  1. [AB1] L. Almeida et F. Bethuel, Multiplicity results for the Ginzburg-Landau equation in presence of symmetries, prepublication. Zbl0901.35029
  2. [AB2] L. Almeida et F. Bethuel, Topological methods for the Ginzburg-Landau equation, prépublication. Zbl0826.35036
  3. [BC] A. Bahri et J.M. Coron, On a nonlinear elliptic equation involving the critical exponent: the effect of the topology of the domain ; comm. Pure Appl. Math41 (1988) pp 253-294. Zbl0649.35033MR929280
  4. [BR] F. Bethuel et T. Rivière, vortices for a minimization problem related to superconductivity, Ann. IHP, Analyse non linéaire12 (1995). Zbl0842.35119MR1340265
  5. [C] J.M. Coron, Topologie et cas limites des injections de Sobolev, C.R. Acad. Sci. Paris299 (1984) p.209-212. Zbl0569.35032MR762722
  6. [HH] R.M. Hervé et M. Hervé, Etude qualitative des solutions réelles de l'équation différentielle r2 f''(r) + r f'(r) - q2 f (r) + r2(1- f2(r)) = 0, Ann. IHP, Analyse non linéaire (1994). 
  7. [Li] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. IMP, Analyse non linéaire. Zbl0845.35052
  8. [McD] D. Mac Duff, Configuration spaces of positive and negative particles, Topology14 (1974), 91-107. Zbl0296.57001MR358766
  9. [Str] G.M. Struwe, On the asymptotic behavior of the Ginzburg-Landau model in 2-dimensions, J. Differential Integral equations7 (1994) Erratum 8 (1995). Zbl0817.35029
  10. [T] C. Taubes, Min Max theory for the Yang-Mills-Higgs equationComm. Math. Phys, 97 (1985) p.473-540. Zbl0585.58016MR787116
  11. [Vi] C. Viterbo, Indice de Morse des points critiques obtenus par minimax, Ann IHP, Analyse non linéaire5 (1988), 221-225. Zbl0695.58007MR954472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.