Partial differential equations and image smoothing

V. Caselles; B. Coll; J.-M. Morel

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-30

How to cite

top

Caselles, V., Coll, B., and Morel, J.-M.. "Partial differential equations and image smoothing." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-30. <http://eudml.org/doc/112133>.

@article{Caselles1995-1996,
author = {Caselles, V., Coll, B., Morel, J.-M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {mean curvature motion; Osher-Sethian equation; local image smoothing; singular points; degenerate partial differential equation},
language = {eng},
pages = {1-30},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Partial differential equations and image smoothing},
url = {http://eudml.org/doc/112133},
year = {1995-1996},
}

TY - JOUR
AU - Caselles, V.
AU - Coll, B.
AU - Morel, J.-M.
TI - Partial differential equations and image smoothing
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 30
LA - eng
KW - mean curvature motion; Osher-Sethian equation; local image smoothing; singular points; degenerate partial differential equation
UR - http://eudml.org/doc/112133
ER -

References

top
  1. [AGLM1] L. Alvarez, F. Guichard, P.L. Lions and J.M. Morel, Axioms and fundamental equations of image processing Report 9216, 1992 CEREMADE. Université Paris Dauphine. Arch. for Rat. Mech. 16, IX, 200-257, 1993 Zbl0788.68153MR1225209
  2. [AMI] L. Alvarez and J.M. Morel.Formalization and Computational Aspects of Image Analysis, Acta Numerica, 1994, Cambridge University Press. Zbl0933.68143MR1288095
  3. [AM] L. Alvarez and Freya Morales.Affine Morphological Multiscale Analysis of Corners and Multiple Junctions. Ref 9402, August 1994, Dept. Informatica y Systemas, Universidad de Las Palmas de Gran Canaria. To appear in International Journal of Computer Vision. 
  4. [BMO] B. Merriman, J. Bence and S. Osher, Motion of multiple junctions: a level set approach, CAM Report 93-19. Depart. of Mathematics. University of California, Los Angeles CA, June 1993. Zbl0805.65090MR1277282
  5. [CCCD] V. Caselles, F. Catté, T. Coll and F. Dibos.A geometric model for active contours in image processing. Numerische Mathematik, 66, 1-31, 1993. Zbl0804.68159MR1240700
  6. [CCM] V. Caselles, T. Coll and J.M. Morel.A Kanizsa programme, preprint, Ceremade, 1995. Submitted to Int. Journal of Comp. Vision. 
  7. [CGG] Y.G. Chen, Y. Giga and S. Goto.Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Diff. Geometry, 33, 749-786, 1991. Zbl0696.35087MR1100211
  8. [CIL] M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equation, Bull. Amer. Math. Soc., 27,1-67,1992. Zbl0755.35015MR1118699
  9. [ES] L.C. Evans and J. Spruck.Motion of level sets by mean curvature. J. Differential Geom., (33): 635-681, 1991. Zbl0726.53029MR1100206
  10. [F] W. Fuchs.Experimentelle Untersuchungen ueber das simultane Hintereinandersehen auf der selben Sehrichtung, Zeitschrift fuer Psychologie, 91, 154-253, 1923 
  11. [GH] M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geometry23, 69-96, 1986. Zbl0621.53001MR840401
  12. [GGIS] Y. Giga, S. Goto, H. Ishii and M.M. Sato.Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 443-470, 1991. Zbl0836.35009MR1119185
  13. [Gr] M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geometry26, 285-314, 1987. Zbl0667.53001MR906392
  14. [GM] F. Guichard and J.M. Morel.Image Iterative Smoothing and P.D.E.'s. To appear, Cambridge University Press. 
  15. [Ka] G. KanizsaVedere e pensare, Il Mulino, Bologna, 1991. 
  16. [KTZ] B.B. Kimia, A. Tannenbaum, and S.W. Zucker, On the evolution of curves via a function of curvature, 1: the classical case, J. of Math. Analysis and Applications163, No 2, 1992. Zbl0771.53003MR1145840
  17. [MS] J.M. Morel and S. Solimini.Variational methods in image processing, Birkhäuser, 1994. Zbl0827.68111
  18. [NM] M. Nitzberg and D. Mumford. "The 2.1 Sketch", in Proceedings of the Third International Conference on Computer Vision, Osaka1990. 
  19. [OS] S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation, J. Comp. Physics79, 12-49, 1988. Zbl0659.65132MR965860
  20. [ST1] G. Sapiro and A. Tannenbaum.On affine plane curve evolution. Journal of Functional Analysis, 119, 1, 79-120, 1994. Zbl0801.53008MR1255274
  21. [Wi] A.P. Witkin.Scale-space filtering. Proc. of IJCAI, Karlsruhe1983, 1019-1021. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.