Convergence de solutions des équations de Navier-Stokes vers des solutions autosimilaires

F. Planchon

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-15

How to cite

top

Planchon, F.. "Convergence de solutions des équations de Navier-Stokes vers des solutions autosimilaires." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-15. <http://eudml.org/doc/112136>.

@article{Planchon1995-1996,
author = {Planchon, F.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {initial value problem; Besov space technique},
language = {fre},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Convergence de solutions des équations de Navier-Stokes vers des solutions autosimilaires},
url = {http://eudml.org/doc/112136},
year = {1995-1996},
}

TY - JOUR
AU - Planchon, F.
TI - Convergence de solutions des équations de Navier-Stokes vers des solutions autosimilaires
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - fre
KW - initial value problem; Besov space technique
UR - http://eudml.org/doc/112136
ER -

References

top
  1. [Ca] M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, Diderot Editeurs (1995). Zbl1049.35517MR1688096
  2. [Ca-P] M. Cannonce et F. Planchon, Self similar solutions for Navier-Stokes equations in R3, to appear in Comm. in PDE. Zbl0842.35075
  3. [Car] A. Carpio, Asymptotic Behavior for the Vorticity Equations in dimensions two and three, Comm. in PDE, 19, p.827-872 (1994). Zbl0816.35108MR1274542
  4. [Kat] T. Kato, Strong Lp solutions of the Navier-Stokes equations in Rm with applications to weak solutions, Math. Zeit., 187, p.471-480 (1984). Zbl0545.35073MR760047
  5. [K-F] T. Kato et H. Fujita, On the non-stationnary Navier-Stokes system, Rend. Sem. Math. Univ. Padova32 p.243-260 (1962). Zbl0114.05002MR142928
  6. [Kav] O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. IHP non linéaire, vol. 4 n°5 p. 423-452 (1987) Zbl0653.35036MR921547
  7. [Mey] Y. Meyer, Ondelettes et opérateurs I, Hermann (1990) Zbl0694.41037MR1085487
  8. [Pee] J. PeetreNew thoughts on Besov spaces, Duke Univ. Math. Series, Duke Univ., Durham (1976). Zbl0356.46038MR461123
  9. [Trie] H. TriebelTheory of function spaces, Birkhaüser (1983). Zbl0546.46027MR781540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.