Nombres de Reynolds, stabilité et Navier-Stokes

Marco Cannone

Banach Center Publications (2000)

  • Volume: 52, Issue: 1, page 29-59
  • ISSN: 0137-6934

How to cite

top

Cannone, Marco. "Nombres de Reynolds, stabilité et Navier-Stokes." Banach Center Publications 52.1 (2000): 29-59. <http://eudml.org/doc/209062>.

@article{Cannone2000,
author = {Cannone, Marco},
journal = {Banach Center Publications},
keywords = {Navier-Stokes equations; weak solution; mild solution; global existence; smoothness; uniqueness; stability},
language = {fre},
number = {1},
pages = {29-59},
title = {Nombres de Reynolds, stabilité et Navier-Stokes},
url = {http://eudml.org/doc/209062},
volume = {52},
year = {2000},
}

TY - JOUR
AU - Cannone, Marco
TI - Nombres de Reynolds, stabilité et Navier-Stokes
JO - Banach Center Publications
PY - 2000
VL - 52
IS - 1
SP - 29
EP - 59
LA - fre
KW - Navier-Stokes equations; weak solution; mild solution; global existence; smoothness; uniqueness; stability
UR - http://eudml.org/doc/209062
ER -

References

top
  1. [1] C. Bardos, F. Golse and D. Levermore, Fluid dynamical limits of kinetic equations, I: Formal derivation, J. Stat. Physics 63 (1991), 323-344. 
  2. [2] C. Bardos, F. Golse and D. Levermore, Fluid dynamical limits of kinetic equations, II: Convergence proofs, Comm. Pure and Appl. Mathematics 46 (1993), 667-753. Zbl0817.76002
  3. [3] C. Bardos, F. Golse and D. Levermore, Acoustic and Stokes limits for the Boltzmann equation, C.R.A.S.P. 327 (1998), 323-328. Zbl0918.35109
  4. [4] C. Bardos, From molecules to turbulence. An overview of multiscale analysis in fluid dynamics, in: Advanced topics in theoretical fluid mechanics, J. Málec, J. Nečas and M. Rokyta (ed.), Pitman Research Notes in Mathematics Series 392, Longman, 1998. 
  5. [5] O. A. Barraza, Self-similar solutions in weak L p spaces of the Navier-Stokes equations, Rev. Mat. Iberoamericana 12 (1996), 411-439. Zbl0860.35092
  6. [6] J. Bergh and J. Löfstrom, Interpolation spaces, An Introduction, Springer-Verlag,1976. Zbl0344.46071
  7. [7] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Mathematica 114 (1995), 181-205. Zbl0829.35044
  8. [8] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Ann. Sci. Ec. Norm. Sup. 4ème Série 14 (1981), 209-246. Zbl0495.35024
  9. [9] H. Brézis, Remarks on the preceding paper by M. Ben-Artzi, Arch. Rat. Mech. Anal. 128 (1994), 359-360. 
  10. [10] H. Brézis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277-304. Zbl0868.35058
  11. [11] C. P. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in L p , Trans. Amer. Math. Soc. 318 (1990), 179-200. Zbl0707.35118
  12. [12] C. P. Calderón, Addendum to the paper: ’Existence of weak solutions for the Navier-Stokes equations with initial data in L p ’, Trans. Amer. Math. Soc. 318 (1990), 201-207. Zbl0707.35119
  13. [13] C. P. Calderón, Initial values of solutions of the Navier-Stokes equations, Proc. Amer. Math. Soc. 117 (1993), 761-766. Zbl0777.35054
  14. [14] J. R. Cannon and G. H. Knightly, A note on the Cauchy problem for the Navier-Stokes equations, SIAM J. Appl. Math. 18 (1970), 641-644. Zbl0202.37203
  15. [15] M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, Diderot Editeur, 1995. 
  16. [16] M. Cannone, A generalisation of a theorem by Kato on Navier-Stokes equations, Revista Matematica Iberoamericana 13 (1997), 515-541. Zbl0897.35061
  17. [17] M. Cannone and Y. Meyer, Littlewood-Paley decomposition and the Navier-Stokes equations, Meth. and Appl. of Anal. 2 (1995), 307-319. Zbl0842.35074
  18. [18] M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, Exposé n. VIII, Séminaire X-EDP, Ecole Polytechnique (Janvier 1994). 
  19. [19] M. Cannone and F. Planchon, Self-similar solutions of the Navier-Stokes equations in 3 , Comm. Part. Diff. Eq. 21 (1996), 179-193. Zbl0842.35075
  20. [20] M. Cannone and F. Planchon, On the regularity of the bilinear term for solutions of the incompressible Navier-Stokes equations in 3 , Revista Matematica Iberoamericana 16 (2000), 1-16. Zbl0965.35121
  21. [21] M. Cannone and F. Planchon, On the non stationary Navier-Stokes equations with an external force, Adv. in Diff. Eq. 4 (1999), 697-730. Zbl0952.35089
  22. [22] M. Cannone, F. Planchon and M. Schonbek, Navier-Stokes equations in the half space, Comm. P.D.E. (à paraître, 1999). 
  23. [23] M. Cannone and F. Planchon, Fonctions de Lyapunof pour les équations de Navier-Stokes, à paraître dans séminaire X-EDP, Ecole Polytechnique (1999-2000). 
  24. [24] A. L. Cauchy, Sur les équations qui expriment les conditions d'équilibre ou les lois du mouvement des fluides, dans 'Exercices de Mathématiques' Œ uvres complètes, II Série, Tome VIII (1890), Gauthier-Villars, Paris, (1828), 158-179. 
  25. [25] T. Cazenave and F. Weissler, Asymptotically self-similar global solutions of the non linear Schrödinger and heat equations, Math. Zeit. 228 (1998), 83-120. Zbl0916.35109
  26. [26] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences 104, Springer-Verlag, 1994. Zbl0813.76001
  27. [27] C. Cercignani, Ludwig Boltzmann: the man who trusted atoms, Oxford University Press, 1998. Zbl0917.01028
  28. [28] J. Y. Chemin, Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal. 23 (1992), 20-28. 
  29. [29] J. Y. Chemin, About Navier-Stokes system, Publ. Lab. Anal. Num. (Univ. Paris 6) R 96023, (1996) 1-43. 
  30. [30] J. Y. Chemin, Sur l'unicité dans le système de Navier-Stokes tridimensionnel, Exposé n. XXIV, Séminaire X-EDP, Ecole Polytechnique, (1996-1997). 
  31. [31] J. Y. Chemin, Sur l'unicité dans le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999), 27-50. 
  32. [32] P. Constantin and C. Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, 1988. 
  33. [33] J. S. Darrozes et C. François, Mécanique des Fluides Incompressibles, Springer Verlag, Berlin, 1982. Zbl0487.76002
  34. [34] N. Depauw, Solutions peu régulières des équations d'Euler et Navier-Stokes incompressibles sur un domaine à bord, Thèse de Doctorat de l'Université de Paris Nord, 1998. 
  35. [35] P. G. Drazin and W. H. Reid, Hydrodynamic stability, Cambridge University Press, 1981. 
  36. [36] R. Dugas, Histoire de la mécanique, Paris, Editions Dunod, Neuchatel Editions du Griffon, 1950. Zbl0041.00102
  37. [37] E. B. Fabes, B. F. Jones and N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in L p , Arch. Rat. Mech. Anal. 45 (1972), 222-240. Zbl0254.35097
  38. [38] E. B. Fabes, J. E. Lewis and N. M. Rivière, Boundary value problems for the Navier-Stokes equations, Am. Jour. of Math. 99 (1977), 601-625. Zbl0386.35037
  39. [39] P. Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993), 219-248. Zbl0795.35080
  40. [40] C. Foias and R. Temam, Self-similar universal homogeneous statistical solutions of the Navier-Stokes equations, Comm. Math. Phys. 90 (1983) 187-20. 
  41. [41] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, Monograph in the CBM-AMS 79, 1991. Zbl0757.42006
  42. [42] G. Furioli, Applications de l'analyse harmonique réelle à l'étude des équations de Navier-Stokes et de Schrödinger non linéaires, Thèse de Doctorat de l'Université d'Orsay, 1999. 
  43. [43] G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Sur l’unicité dans L 3 ( 3 ) des solutions mild des équations de Navier-Stokes, C. R. Acad. Sci. Paris 325 (1997), 1253-1256. Zbl0894.35083
  44. [44] G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Unicité dans L 3 ( 3 ) et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana (à paraître, 2000). 
  45. [45] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal. 16 (1964), 269-315. Zbl0126.42301
  46. [46] A. Georgescu, Hydrodynamic stability theory, Martinus Nijhoff Publishers, Kluwer 1985. Zbl0608.76035
  47. [47] Y. Giga, Weak and strong solutions of the Navier-Stokes initial value problem, Publ. RIMS, Kyoto Univ. 19 (1983), 887-910. Zbl0547.35101
  48. [48] Y. Giga, Domains of fractional powers of the Stokes operator in L r spaces, Arch. Mech. Rat. Anal. 89 (1985), 251-265. Zbl0584.76037
  49. [49] Y. Giga, Solutions for semi linear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system J. Diff. Equat. 61 (1986), 186-212. 
  50. [50] Y. Giga, Regularity criteria for weak solutions of the Navier-Stokes system, Proceedings of Symposia in Pure Mathematics 45 (1986), 449-453. 
  51. [51] Y. Giga, Review of the paper by H. Brezis, 'Remarks on the preceding paper by M. Ben-Artzi', Math. Reviews 96h:35149, (August 1996) [see, for the revised form, at the address http://klymene.mpim-bonn.mpg.de:80/msnprhtml/review_search.html]. 
  52. [52] Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Quaderni di Matematica (à paraître, 2000). Zbl0961.35110
  53. [53] Y. Giga and T. Miyakawa, Solutions in L r of the Navier-Stokes initial value problem, Arch. Mech. Rat. Anal. 89 (1985), 267-281. Zbl0587.35078
  54. [54] Y. Giga and T. Miyakawa, Navier-Stokes flows in 3 with measures as initial vorticity and the Morrey spaces, Comm. PDE 14 (1989), 577-618. Zbl0681.35072
  55. [55] G. Grubb, Initial value problems for the Navier-Stokes equations with Neumann conditions, in: 'The Navier-Stokes equations II', J. G. Heywood, K. Masuda, R. Rautmann and S. A. Solonnikov (ed.), Proc. Conf. Oberwolfach 1991, Lecture Notes in Mathematics 1530, Springer, Berlin, 1992, 262-283. Zbl0781.35051
  56. [56] A. Haraux and F. Weissler, Non-uniqueness for a semi-linear initial value problem, Indiana Univ. Math. J. 31 (1982), 167-189. Zbl0465.35049
  57. [57] J. G. Heywood and R Rannacher, An analysis of stability concepts for the Navier-Stokes equations, J. Reine Angew. Math. 372 (1986), 1-33. Zbl0598.35091
  58. [58] J. E. Johnsen, The Stationary Navier-Stokes Equations in L p and Related Spaces, Ph. D. Thesis, Mathematics Institute University of Copenhagen, Denmark, 1993. 
  59. [59] D. D. Joseph, Stability of fluid motions, (2 vols) Springer Tracts in Natural Philosophy, Berlin, Springer Verlag, 1976. Zbl0345.76023
  60. [60] R. Kajikaya and T. Miyakawa, On L 2 -decay of weak solutions of the Navier-Stokes equations in n , Math. Z. 192 (1986), 135-148. 
  61. [61] T. Kato, Nonlinear evolution equations in Banach spaces, Proceedings of the Symposium on Applied Mathematics, AMS 17 (1965), 50-67. 
  62. [62] T. Kato, Nonstationary flows of viscous and ideal fluids in 3 , J. Functional Analysis 9 (1972), 296-305. Zbl0229.76018
  63. [63] T. Kato, Quasi-linear equations of evolution with application to partial differential equations, in: Lecture Notes in Mathematics 448, Springer, 1975, 25-70. 
  64. [64] T. Kato, Strong L p solutions of the Navier-Stokes equations in m with applications to weak solutions, Math. Zeit. 187 (1984), 471-480. Zbl0545.35073
  65. [65] T. Kato, Liapunov functions and monotonicity in the Navier-Stokes equations, Lecture Notes in Mathematics 1450, 1990, 53-63. 
  66. [66] T. Kato, Strong solutions of the Navier-Stokes equations in Morrey spaces, Bol. Soc. Brasil. Math. (N.S.) 22 (1992), 127-155. Zbl0781.35052
  67. [67] T. Kato, Well-posedness nitsuite, Sugaku (en japonais) 48 (1996), 298-300. 
  68. [68] T. Kato and H. Fujita, On the non-stationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243-260. Zbl0114.05002
  69. [69] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891-907. Zbl0671.35066
  70. [70] T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data, Int. Math. Res. Not. 10 (1994), 435-444. Zbl0837.35116
  71. [71] T. Kawanago, Stability estimate of strong solutions for the Navier-Stokes system and its application, Electron. J. Differential Equations (electronic) (see: http://ejde.math.swt. edu/Volumes/1998/15-Kawanago/abstr.html) 15 (1998), 1-23. 
  72. [72] A. A. Kiselev and O. A. Ladyzhenskaya, On the existence and uniqueness of solutions of the initial value problem for viscous incompressible fluids, Izvestia Akad. Nauk SSSR, 21 (1957), 655-680 (en russe). 
  73. [73] G. H. Knightly, A Cauchy problem for the Navier-Stokes equations in n , SIAM J. Math. Anal. 3 (1972), 506-511. Zbl0246.76021
  74. [74] G. H. Knightly, On a class of global solutions of the Navier-Stokes equations, Arch. Mech. Rat. Anal. 21 (1966), 211-245. Zbl0148.21603
  75. [75] T. Kobayoshi and T. Muramatu, Abstract Besov spaces approach to the non-stationary Navier-Stokes equations, Math. Meth. Appl. Sc. 15 (1992), 599-620. Zbl0771.35046
  76. [76] H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. P.D.E. 19 (1994), 959-1014. Zbl0803.35068
  77. [77] H. Kozono and M. Yamazaki, The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation, Ind. Univ. Math. Journ. 44 (1995), 1307-1336. Zbl0853.35089
  78. [78] L. D. Landau, Sur le problème de la turbulence, Dokl. Akad. Nauk. SSSR 44 (1944), 339-342 (en russe). 
  79. [79] L. D. Landau et E. M. Lifchitz, Mécanique des fluides, MIR, Moscou, 2ème édition, 1989. 
  80. [80] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, 2nd ed., 1969. Zbl0184.52603
  81. [81] Y. Le Jan and A. S. Sznitman, Cascades aléatoires et équations de Navier-Stokes, C. R. Acad. Sci. Paris 324 (1997), 823-826. Zbl0876.35083
  82. [82] Y. Le Jan and A.S. Sznitman, Stochastic cascades and 3-dimensional Navier-Stokes equations, Prob. Theory Related Fields 109 (1997) 343-366. Zbl0888.60072
  83. [83] P. G. Lemarié-Rieusset, Some remarks on the Navier-Stokes equations in 3 , Jour. Math. Phys. 39 (1998), 4108-4117. 
  84. [84] J. Leray, Etudes de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82. Zbl0006.16702
  85. [85] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248. 
  86. [86] J. Leray, Essai sur les mouvements plans d'un liquide visqueux que limitent des parois, J. Math. Pures Appl. 13 (1934), 331-418. Zbl60.0727.01
  87. [87] J. Leray, Aspects de la mécanique théorique des fluides, La Vie des Sciences, Comptes Rendus, Série générale, II (1994), 287-290. Zbl0815.76002
  88. [88] J. Leray, Selected Papers, Œ uvres Scientifiques, Springer et Société Mathématique de France, Volume II, Fluid Dynamics and Real Partial Differential Equations. Introduction by Peter D. Lax, 1998. 
  89. [89] J. E. Lewis, The initial-boundary value problem for the Navier-Stokes equations with data in L p , Indiana Univ. Math. Jour. 22 (1973), 739-761. Zbl0252.35054
  90. [90] C. C. Lin, The theory of hydrodynamic stability, Corrected reprinting, Cambridge University Press, New York, 1966. 
  91. [91] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. Zbl0189.40603
  92. [92] P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol 1. Incompressible models, Oxford University Press, 1996. Zbl0866.76002
  93. [93] P. L. Lions et N. Masmoudi, Unicité des solutions faibles de Navier-Stokes dans L N ( Ω ) , C.R.A.S.P. 327 (1998), 491-496. Zbl0990.35114
  94. [94] A. M. Lyapunov, Stability of Motion, (traduit du russe), Academic Press, 1966. 
  95. [95] J. Málek, J. Nečas, M. Pokorný and M. E. Schonbek, On possible singular solutions to the Navier-Stokes equations, Math. Nachr. (1998). Zbl0922.35126
  96. [96] Y. Meyer, Wavelets, paraproducts and Navier-Stokes equations, Current Developments in Mathematics 1996, International Press, 105-212 %Cambridge, MA 02238-2872 (à paraître, 1999). Zbl0926.35115
  97. [97] Y. Meyer, New estimates for Navier-Stokes equations (manuscrit), Colloque en l'honneur de J.-L. Lions à l'occasion de son 70e anniversaire, Paris 26-27 mai 1998, Auditorium du CNRS, 3 rue Michel-Ange, Paris XVIe, 1998. 
  98. [98] T. Miyakawa, On the initial value problem for the Navier-Stokes equations in L p spaces, Hiroshima Math. J. 11 (1981), 9-20. Zbl0457.35073
  99. [99] T. Miyakawa, On L 1 -Stability of Stationary Navier-Stokes Flows in n , J. Math. Sci. Univ. Tokyo 4 (1997), 67-119. 
  100. [100] C. L. M. H. Navier, Mémoire sur les lois du mouvement des fluides, Mém. Acad. Sci. Inst. France 6 (1822), 389-440. 
  101. [101] J. Nečas, M. Rοcirc užička and V. Šverák, On Leray self-similar solutions of the Navier-Stokes equations, Acta Math. 176 (1996), 283-294. Zbl0884.35115
  102. [102] H. Okamoto, Exact solutions of the Navier-Stokes equations via Leray's scheme, Japan J. Indust. Appl. Math.14 (1997), 169-197. Zbl1306.76016
  103. [103] W. Mc F. Orr, The stability or instability of the steady motion of a liquid. Part II, A viscous fluid, Proc. Roy. Irish Acad. A 27 (1907), 69-138. 
  104. [104] F. Oru, Rôle des oscillations dans quelques problèmes d'analyse non-linéaire, Thèse de Doctorat de l'Ecole Normale Supérieure de Cachan, 1998. 
  105. [105] M. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgesellschaft, Leipzig, 1927. Zbl53.0773.02
  106. [106] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Series, 1976. Zbl0356.46038
  107. [107] F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces for the incompressible Navier-Stokes equations in 3 , Ann. Inst. H. Poinc. 13 (1996), 319-336. Zbl0865.35101
  108. [108] F. Planchon, Convergence de solutions des équations de Navier-Stokes vers des solutions auto-similaires, Exposé n. III, Séminaire X-EDP, Ecole Polytechnique, 1996. 
  109. [109] F. Planchon, Asymptotic behavior of global solutions to the Navier-Stokes equations in 3 , Revista Matematica Iberoamericana 14 (1998), 71-93. Zbl0910.35096
  110. [110] F. Planchon, Solutions Globales et Comportement Asymptotique pour les Equations de Navier-Stokes, PhD Thesis, Ecole Polytechnique, France, 1996. 
  111. [111] S. D. Poisson, Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides élastiques et des fluides, Jour. de l'Ecole Polytechnique 13 (1831), 1-74. 
  112. [112] M. Reed and B. Simon, Fourier Analysis, vol 2, Academic Press, 1975. 
  113. [113] O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinouos and the law of resistence in parallel chanels, Phil. Trans. Roy. Soc. London 174 (1883), 935-982. Zbl16.0845.02
  114. [114] F. Ribaud, Analyse de Littlewood-Paley pour la Résolution d'Equations Paraboliques Semi-linéaires, PhD Thesis, Université d'Orsay, 1996. 
  115. [115] F. Ribaud, Problème de Cauchy pour les équations paraboliques semi-linéaires avec données dans H p s ( n ) , C. R. Acad. Sci. Paris 322 (1996), 25-30. 
  116. [116] F. Ribaud, Semilinear parabolic equations with distributions as initial data, Discrete Contin. Dynam. Systems 3 (1997), 305-316. Zbl0949.35065
  117. [117] G. Rosen, Navier-Stokes initial value problem for boundary-free incompressible fluid flow, Phys. Fluid 13 (1970), 2891-2903. Zbl0213.53503
  118. [118] M. E. Schonbek, L 2 -decay for weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. 88 (1985), 209-222. 
  119. [119] J. Serrin, On the stability of viscous fluid motions, Arch. Rat. Mech. Anal. 3 (1959), 1-13. Zbl0086.20001
  120. [120] J. Serrin, Mathematical principles of classical fluid mechanics, Encyclopedia of Physics, Edited by S. Flügge, vol VIII/1, Fluid Dynamics I, co-editor C. Truesdell, Springer-Verlag, 1959. 
  121. [121] M. Shinbrot, Lectures on Fluid Mechanics, Gordon and Breach, New York, 1973. 
  122. [122] M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Progress in mathematics 100, Birkhäuser, 1991. 
  123. [123] M. E. Taylor, Analysis on Morrey spaces and applications to the Navier-Stokes and other evolution equations, Comm. PDE 17 (1992), 1407-1456. Zbl0771.35047
  124. [124] M. E. Taylor, Partial differential equations. I, II, Applied Mathematical Sciences 115 and 116, Springer Verlag, 1996. 
  125. [125] R. Temam, Navier-Stokes equations. Theory and numerical analysis. With an appendix by F. Thomasset, Third Edition, Studies in Mathematics and its Applications, North-Holland, 1984. Zbl0568.35002
  126. [126] R. Temam, Some developments on Navier-Stokes equations in the second half of the 20th century, in: Développement des Mathématiques au cours de la seconde moité du XXème siècle, J.P. Managing (ed.), 1998. Zbl0970.35103
  127. [127] E. Terraneo, Applications de certains espaces fonctionnels de l'analyse harmonique réelle aux équations de Navier-Stokes et de la chaleur non-linéaires, Thèse de Doctorat de l'% Université d'Evry Val d'Essonne, 1999. 
  128. [128] H. Triebel, Theory of Function Spaces, Monograph in mathematics 78, Birkhäuser, 1983. 
  129. [129] H. Triebel, Theory of Function Spaces II, Monograph in mathematics 84, Birkhäuser, 1992. Zbl0763.46025
  130. [130] C. Truesdell, The mechanical foundations of elasticity and fluid dynamics, J. Rat. Mech. Anal 1 (1952), 125-291. Zbl0046.17306
  131. [131] T. P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rat. Mech. Anal. 143 (1998), 29-51. Zbl0916.35084
  132. [132] H. Villat, Leçons sur les fluides visqueux, recueillies et rédigées par J. Kravtchenko, Gauthier-Villars, Paris, 1943. 
  133. [133] M. Vishik, Incompressible flows of an ideal fluid with vorticity in bordeline spaces of Besov type, preprint (1998). 
  134. [134] K. A. Voss, Self-similar Solutions of the Navier-Stokes Equations, Ph. D. Thesis Yale University, 1996. 
  135. [135] W. von Wahl, The equations of Navier-Stokes and abstract parabolic equations. Aspects of Mathematics, E8. Friedr. Vieweg and Sohn, Braunschweig, 1985. 
  136. [136] F. B. Weissler, Local existence and non existence for semilinear parabolic equation in L p , Indiana Univ. Math. Journ. 29 (1980), 79-102. Zbl0443.35034
  137. [137] F. B. Weissler, The Navier-Stokes initial value problem in L p , Arch. Rat. Mech. Anal. 74 (1981) 219-230. Zbl0454.35072
  138. [138] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on n , J. London Math. Soc. 35 (1987), 303-313. Zbl0652.35095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.