Développement asymptotique de la densité d'états pour des opérateurs de Schrödinger aléatoires singuliers

F. Klopp

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-10

How to cite

top

Klopp, F.. "Développement asymptotique de la densité d'états pour des opérateurs de Schrödinger aléatoires singuliers." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-10. <http://eudml.org/doc/112137>.

@article{Klopp1995-1996,
author = {Klopp, F.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Développement asymptotique de la densité d'états pour des opérateurs de Schrödinger aléatoires singuliers},
url = {http://eudml.org/doc/112137},
year = {1995-1996},
}

TY - JOUR
AU - Klopp, F.
TI - Développement asymptotique de la densité d'états pour des opérateurs de Schrödinger aléatoires singuliers
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
UR - http://eudml.org/doc/112137
ER -

References

top
  1. [1] T. Ando and H. Fukuyama, editors. Anderson Localization, volume 28 of Springer Proceedings in Physics, Heidelberg, 1988. Springer. 
  2. [2] R. Carmona, A. Klein, and F. Martinelli.Anderson localization for Bernoulli and other random potentials. Communications in Mathematical Physics, 108:41-67, 1987. Zbl0615.60098MR872140
  3. [3] R. Carmona and J. Lacroix.Spectral Theory of Random Schrôdinger Operators. Birkhäuser, Basel, 1990. Zbl0717.60074MR1102675
  4. [4] J.M. Combes, P.D. Hislop, and E. Mourre.Spectral averaging, perturbation of singular spectra and localization. PreprintE.S.I, 124,1994. Zbl0868.35081MR1344205
  5. [5] W. Craig and B. Simon.Log-Hölder continuity of the integrated density of states for stochastic Jacobi matrices. Communications in Mathematical Physics, 90:207-218, 1983. Zbl0532.60057MR714434
  6. [6] W. Craig and B. Simon.Subharmonicity of the Ljapunov index. Duke Mathematical Journal, 50:551-559,1983. Zbl0518.35027MR705040
  7. [7] B. Halperin.Properties of a particle in a one-dimensional random potential. Advances in Chemical Physics, 13:123-178,1967. 
  8. [8] R. Hempel and W. Kirsch.On the integrated density of states for crystals with randomly distributed impurities. Communications in Mathematical Physics, 159:459-469,1994. Zbl0790.60055MR1259403
  9. [9] W. Kirsch and F. Martinelli.On the spectrum of Schrödinger operators with a random potential. Communications in Mathematical Physics, 85:329-350,1982. Zbl0506.60058MR678150
  10. [10] W. Kirsch and F. Martinelli.On the essential self-adjointness of stochastic Schrödinger operators. Duke Mathematical Journal, 50:1255-1260,1983. Zbl0543.60069MR726328
  11. [11] F. Klopp.An asymptotic expansion for the density of states of a random Schrödinger operator with Bernoulli disorder. Random Operators and Stochastic Equations, 1995. A paraître. Zbl0841.60047MR1373138
  12. [12] F. Klopp.The density of states of random Schrödinger operators with singular randomness. In Proccedings Conference 'Spectral Theory of Schrödinger Operators', Madras, 1995. Zbl0841.60047
  13. [13] F. Klopp.Localization for some continuous random Schrödinger operators. Communications in Mathematical Physics, 167:553-570,1995. Zbl0820.60044MR1316760
  14. [14] F. Klopp.A low concentration asymptotic expansion for the density of states of a random Schrödinger operator with Poisson disorder. soumis auJournal of Functional Analysis, 1995. Zbl0884.60059
  15. [15] I.M. Lifshits, S.A. Gredeskul, and L.A. Pastur.Introduction to the theory of disordered systems. Wiley, New-York, 1988. MR1042095
  16. [16] Th. M. Nieuwenhuizen and J.M. Luck.Singular behavior of the density of states and the Lyapunov coefficient in binary random harmonic chains. Journal of Statistical Physics, 41:745-771,1985. MR823622
  17. [17] L. Pastur and A. Figotin.Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992. Zbl0752.47002MR1223779
  18. [18] M. Reed and B. Simon.Methods of Modern Mathematical Physics, Vol I: Functional Analysis. Academic Press, New-York, 1980. Zbl0242.46001MR751959
  19. [19] B. Simon and M. Taylor.Harmonic analysis on sl(2, R) and smoothness of the density of states in the one-dimensional Anderson model. Communications in Mathematical Physics, 101:1-20,1985. Zbl0577.60067MR814540
  20. [20] F. Wegner.Bounds on the density of states in disordered systems. Zeitschrift für Physik B, 44:9-15, 1981. MR639135
  21. [21] D.R. Yafaev.Mathematical Scattering Theory, volume 105 of Transaction of Mathematical Monographs.American Mathematical Society, Providence, R.I, 1992. Zbl0761.47001MR1180965

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.