Interactions trilinéaires résonantes

G. Métivier; S. Schochet

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-14

How to cite


Métivier, G., and Schochet, S.. "Interactions trilinéaires résonantes." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-14. <>.

author = {Métivier, G., Schochet, S.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {resonant one-dimensional nonlinear geometric optics; multiscale Young measures; asymptotic behaviour of weak solutions; compensated compactness},
language = {fre},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Interactions trilinéaires résonantes},
url = {},
year = {1995-1996},

AU - Métivier, G.
AU - Schochet, S.
TI - Interactions trilinéaires résonantes
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - fre
KW - resonant one-dimensional nonlinear geometric optics; multiscale Young measures; asymptotic behaviour of weak solutions; compensated compactness
UR -
ER -


  1. [A] G. Allaire, Homogeneization and two scale convergence, S.I.A.M. J. Math. Anal., 23 (1992) pp 1482-1518. Zbl0770.35005MR1185639
  2. [BB] W. Blaschke and G. Bol, Geometrie der Gewebe, Springer-Verlag, New York, 1938. Zbl0020.06701JFM64.0727.03
  3. [DiP 1] R. Di Perna, Convergence of approximate solutions to conservation laws, Arch. for Rat. Mech. Anal., 82 (1983) pp 27-70. Zbl0519.35054MR684413
  4. [DiP 2] R Di Perna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., 91 (1983) pp 1- 30. Zbl0533.76071MR719807
  5. [DiP 3] R Di Perna, Compensated compactness and general systems of cnservation laws, Trans. Amer. Math. Soc., 292 (1985) pp 383-420. Zbl0606.35052MR808729
  6. [DiP 4] R.Di Perna, Measure valued solutions to conservation laws, Arch. forRat. Mech. Anal., 88 (1985) pp 223-270. Zbl0616.35055MR775191
  7. [E] W.E, Homogeneization of linear and nonlinear transport equations, Comm. on Pure and Appl. Math., 45 (1992) pp 301-326. Zbl0794.35014MR1151269
  8. [ES] W.E., D.Serre, Correctors for the homogeneization of conservation laws with oscillatory forcing terms, Zbl0766.35026
  9. [HK] J. Hunter and J. Keller, Weakly nonlinear high frequency waves, Comm. Pure Appl. Math.36 (1983), 547-569. Zbl0547.35070MR716196
  10. [HMR] J. Hunter, A. Majda, and R. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves II: several space variables, Stud. Appl. Math.75(1986), 187-226. Zbl0657.35084MR867874
  11. [J] J.L. Joly, Sur la propagations des oscillations semi-lineares en dimension 1 d'espace, C. R. Acad. Sc. Paris, t.296, 1983. Zbl0555.35081MR705687
  12. [JMR 1] J.-L. Joly, G. Metivier, and J. Rauch, Resonant one dimensional nonlinear geometric opticsJ. of Funct. Anal.,114,1993, pp 106-231. Zbl0851.35023MR1220985
  13. [JMR 2] J.-L. Joly, G. Metivier, and J. Rauch, Focusing at a point and absorption of nonlinear oscillations, Trans. Amer. Math. Soc., 347 (1995), pp 3921-3971. Zbl0857.35087MR1297533
  14. [JMR 3] J.-L. Joly, G. Metivier, and J. Rauch, Compacité par compensation trilinéaire et optique géométrique non linéaire, Séminaire École Polytechnique, année 1993-94. Zbl0925.35098MR1300898
  15. [JMR 4] J.-L. Joly, G. Metivier, and J. Rauch, Trilinear compensated compactness, Annals of Maths., 142 (1995), pp 121-169. Zbl0840.35013MR1338676
  16. [McLPT] D.W. McLaughlin, G. Papanicolaou and L. Tartar, Weak limits of semi-linear hyperbolic systems with oscillating data, in Macroscopic Modelling of Turbulent Flow, Lecture Notes in Physics, 230 (1985), pp277-298. Zbl0588.76137MR815948
  17. [MR] A. Majda and R. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves I: a single space variable, Stud. Appl. Math.71 (1984), 149-179. Zbl0572.76066MR760229
  18. [P] H. Poincaré, Sur les surfaces de translation et les fonctions Abeliennes, Bull. Soc. Math. France, 29 (1901), pp 61-86. Zbl32.0459.04MR1504382JFM32.0459.04
  19. [Sch 1] S. Schochet, Resonant nonlinear geometric optics for weak solutions of conservation laws, J. Dif. Equ., 113 (1994) 473-504. Zbl0856.35080MR1297667
  20. [Sch 2] S. Schochet, Fast singular limits of hyperbolic partial differential equations, J.Diff.Eq.114 (1994), pp 474-512. Zbl0838.35071MR1303036
  21. [T 1] L. Tartar, Solutions oscillantes des équations de Carleman, Séminaire Goulaouic-Schwartz, École Polytechnique, Paris, année 1980-0981. Zbl0481.35010MR657995
  22. [T 2] L. Tartar, Compensated compactness and applications to partial differential equations, Research Notes in Math., Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol 4 (R.J.Knops ed.) Pitman Press1979. Zbl0437.35004MR584398
  23. [T 3] L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear Partial Differential Equations, (J.M.Ball ed.) NATO ASI Series, C.Reidel 1983. Zbl0536.35003MR725524
  24. [W] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris1940. Zbl0063.08195

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.