Interactions trilinéaires résonantes

G. Métivier; S. Schochet

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-14

How to cite

top

Métivier, G., and Schochet, S.. "Interactions trilinéaires résonantes." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-14. <http://eudml.org/doc/112139>.

@article{Métivier1995-1996,
author = {Métivier, G., Schochet, S.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {resonant one-dimensional nonlinear geometric optics; multiscale Young measures; asymptotic behaviour of weak solutions; compensated compactness},
language = {fre},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Interactions trilinéaires résonantes},
url = {http://eudml.org/doc/112139},
year = {1995-1996},
}

TY - JOUR
AU - Métivier, G.
AU - Schochet, S.
TI - Interactions trilinéaires résonantes
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - fre
KW - resonant one-dimensional nonlinear geometric optics; multiscale Young measures; asymptotic behaviour of weak solutions; compensated compactness
UR - http://eudml.org/doc/112139
ER -

References

top
  1. [A] G. Allaire, Homogeneization and two scale convergence, S.I.A.M. J. Math. Anal., 23 (1992) pp 1482-1518. Zbl0770.35005MR1185639
  2. [BB] W. Blaschke and G. Bol, Geometrie der Gewebe, Springer-Verlag, New York, 1938. Zbl0020.06701JFM64.0727.03
  3. [DiP 1] R. Di Perna, Convergence of approximate solutions to conservation laws, Arch. for Rat. Mech. Anal., 82 (1983) pp 27-70. Zbl0519.35054MR684413
  4. [DiP 2] R Di Perna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., 91 (1983) pp 1- 30. Zbl0533.76071MR719807
  5. [DiP 3] R Di Perna, Compensated compactness and general systems of cnservation laws, Trans. Amer. Math. Soc., 292 (1985) pp 383-420. Zbl0606.35052MR808729
  6. [DiP 4] R.Di Perna, Measure valued solutions to conservation laws, Arch. forRat. Mech. Anal., 88 (1985) pp 223-270. Zbl0616.35055MR775191
  7. [E] W.E, Homogeneization of linear and nonlinear transport equations, Comm. on Pure and Appl. Math., 45 (1992) pp 301-326. Zbl0794.35014MR1151269
  8. [ES] W.E., D.Serre, Correctors for the homogeneization of conservation laws with oscillatory forcing terms, Zbl0766.35026
  9. [HK] J. Hunter and J. Keller, Weakly nonlinear high frequency waves, Comm. Pure Appl. Math.36 (1983), 547-569. Zbl0547.35070MR716196
  10. [HMR] J. Hunter, A. Majda, and R. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves II: several space variables, Stud. Appl. Math.75(1986), 187-226. Zbl0657.35084MR867874
  11. [J] J.L. Joly, Sur la propagations des oscillations semi-lineares en dimension 1 d'espace, C. R. Acad. Sc. Paris, t.296, 1983. Zbl0555.35081MR705687
  12. [JMR 1] J.-L. Joly, G. Metivier, and J. Rauch, Resonant one dimensional nonlinear geometric opticsJ. of Funct. Anal.,114,1993, pp 106-231. Zbl0851.35023MR1220985
  13. [JMR 2] J.-L. Joly, G. Metivier, and J. Rauch, Focusing at a point and absorption of nonlinear oscillations, Trans. Amer. Math. Soc., 347 (1995), pp 3921-3971. Zbl0857.35087MR1297533
  14. [JMR 3] J.-L. Joly, G. Metivier, and J. Rauch, Compacité par compensation trilinéaire et optique géométrique non linéaire, Séminaire École Polytechnique, année 1993-94. Zbl0925.35098MR1300898
  15. [JMR 4] J.-L. Joly, G. Metivier, and J. Rauch, Trilinear compensated compactness, Annals of Maths., 142 (1995), pp 121-169. Zbl0840.35013MR1338676
  16. [McLPT] D.W. McLaughlin, G. Papanicolaou and L. Tartar, Weak limits of semi-linear hyperbolic systems with oscillating data, in Macroscopic Modelling of Turbulent Flow, Lecture Notes in Physics, 230 (1985), pp277-298. Zbl0588.76137MR815948
  17. [MR] A. Majda and R. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves I: a single space variable, Stud. Appl. Math.71 (1984), 149-179. Zbl0572.76066MR760229
  18. [P] H. Poincaré, Sur les surfaces de translation et les fonctions Abeliennes, Bull. Soc. Math. France, 29 (1901), pp 61-86. Zbl32.0459.04MR1504382JFM32.0459.04
  19. [Sch 1] S. Schochet, Resonant nonlinear geometric optics for weak solutions of conservation laws, J. Dif. Equ., 113 (1994) 473-504. Zbl0856.35080MR1297667
  20. [Sch 2] S. Schochet, Fast singular limits of hyperbolic partial differential equations, J.Diff.Eq.114 (1994), pp 474-512. Zbl0838.35071MR1303036
  21. [T 1] L. Tartar, Solutions oscillantes des équations de Carleman, Séminaire Goulaouic-Schwartz, École Polytechnique, Paris, année 1980-0981. Zbl0481.35010MR657995
  22. [T 2] L. Tartar, Compensated compactness and applications to partial differential equations, Research Notes in Math., Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol 4 (R.J.Knops ed.) Pitman Press1979. Zbl0437.35004MR584398
  23. [T 3] L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear Partial Differential Equations, (J.M.Ball ed.) NATO ASI Series, C.Reidel 1983. Zbl0536.35003MR725524
  24. [W] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris1940. Zbl0063.08195

NotesEmbed ?

top

You must be logged in to post comments.