Solutions oscillantes des équations de Carleman

L. Tartar

Séminaire Équations aux dérivées partielles (Polytechnique) (1980-1981)

  • page 1-15

How to cite

top

Tartar, L.. "Solutions oscillantes des équations de Carleman." Séminaire Équations aux dérivées partielles (Polytechnique) (1980-1981): 1-15. <http://eudml.org/doc/111786>.

@article{Tartar1980-1981,
author = {Tartar, L.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Carleman's equations; oscillating solutions; decay in time},
language = {fre},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Solutions oscillantes des équations de Carleman},
url = {http://eudml.org/doc/111786},
year = {1980-1981},
}

TY - JOUR
AU - Tartar, L.
TI - Solutions oscillantes des équations de Carleman
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1980-1981
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - fre
KW - Carleman's equations; oscillating solutions; decay in time
UR - http://eudml.org/doc/111786
ER -

References

top
  1. [1] Caflish. R., Papanicolaou G.: the fluid-dynamical limit of a non linear model Botzmann equation. Comm. Pure Appl. Math. Vol. XXXII (1979) p. 589-616. Zbl0438.76059
  2. [2] Crandall. M.G.: Semigroups of nonlinear transformations in Banach spaces, dans Contributions to nonlinear functional analysis Zarantonello ed. Madison 1971. Academic Press p. 157-179. Zbl0268.47066MR470787
  3. [3] Craudall M.G. - Tartar L.: Some relations between non expansive and order preserving mappings. Proceedings A.M.S. Vol. 78 n°3 1980 p. 385-390. Zbl0449.47059MR553381
  4. [4] Illner R. - Reed M.: The decay of solutions of the Carleman model à paraître dans Math. Meth in Appl. Sci. Zbl0563.76073
  5. [5] Kolodner I.: On the Carleman's model for the Boltzmann equation and its generalizations. Ann. Math. Pure Appl.63 (1963) p. 11-32. Zbl0158.11201MR168930
  6. [6] Mimura M. - Nishida T.: On the Broadwell's model for a simple discrète velocity gas. Proc. Japan. Acad.50 (1974) p. 812-817. Zbl0326.35051MR380129
  7. [7] Tartar L.: Existence globale pour un système hyperbolique semilinéaire de la théorie cinétique des gaz. Seminaire Goulaouic-Schwartz. Octobre 1975. Zbl0336.35069
  8. [8] Tartar L.: Homogénéisation et compacité par compensation. Séminaire Goulaouic-Schwartz. Décembre 1978. Zbl0406.35055MR557520
  9. [9] Tartar L.: Compensated compactness and applications to partial differential equations dans Nonlinear analysis and mechanics: Heriott Watt symposium, Vol. IV, Knops ed. p. 136-212. Zbl0437.35004MR584398
  10. [10] Tartar L.: Some existence theorems for semilinear hyperbolic systems in one space variable. à paraitre Comm. Pure. Appl. Math. Zbl0458.35064

Citations in EuDML Documents

top
  1. M. Avellaneda, Th. Y. Hou, G. C. Papanicolaou, Finite difference approximations for partial differential equations with rapidly oscillating coefficients
  2. Jean-Luc Joly, Jeff Rauch, Ondes oscillantes semi-linéaires en 1.d
  3. Youcef Amirat, Kamel Hamdache, Abdelhamid Ziani, Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux
  4. P. Donnat, J.-L. Joly, G. Métivier, J. Rauch, Diffractive nonlinear geometric optics
  5. G. Métivier, S. Schochet, Interactions trilinéaires résonantes
  6. J. L. Joly, G. Métivier, J. Rauch, Compacité par compensation trilinéaire et optique géométrique non linéaire

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.