Plongements quasiisométriques du groupe de Heisenberg dans , d’après Cheeger, Kleiner, Lee, Naor
Pierre Pansu[1]
- [1] Université Paris-Sud Laboratoire de Mathématiques d’Orsay UMR 8628 du CNRS 91405 Orsay cedex (France)
Séminaire de théorie spectrale et géométrie (2006-2007)
- Volume: 25, page 159-176
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topPansu, Pierre. "Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d’après Cheeger, Kleiner, Lee, Naor." Séminaire de théorie spectrale et géométrie 25 (2006-2007): 159-176. <http://eudml.org/doc/11221>.
@article{Pansu2006-2007,
abstract = {Bref survol du théorème de non-plongement de J. Cheeger et B. Kleiner pour le groupe d’Heisenberg dans $L^1$.},
affiliation = {Université Paris-Sud Laboratoire de Mathématiques d’Orsay UMR 8628 du CNRS 91405 Orsay cedex (France)},
author = {Pansu, Pierre},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Lipschitz; embedding; Banach space; perimeter; Heisenberg group; algorithm},
language = {fre},
pages = {159-176},
publisher = {Institut Fourier},
title = {Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d’après Cheeger, Kleiner, Lee, Naor},
url = {http://eudml.org/doc/11221},
volume = {25},
year = {2006-2007},
}
TY - JOUR
AU - Pansu, Pierre
TI - Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d’après Cheeger, Kleiner, Lee, Naor
JO - Séminaire de théorie spectrale et géométrie
PY - 2006-2007
PB - Institut Fourier
VL - 25
SP - 159
EP - 176
AB - Bref survol du théorème de non-plongement de J. Cheeger et B. Kleiner pour le groupe d’Heisenberg dans $L^1$.
LA - fre
KW - Lipschitz; embedding; Banach space; perimeter; Heisenberg group; algorithm
UR - http://eudml.org/doc/11221
ER -
References
top- Luigi Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), 51-67 Zbl1002.28004MR1823840
- Sanjeev Arora, Elad Hazan, Satyen Kale, approximation to SPARSEST CUT in time, 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004) (2004), SocietyIEEE ComputerI. C., Los Alamitos, CA Zbl1207.68441
- Sanjeev Arora, James R. Lee, Assaf Naor, Euclidean distortion and the sparsest cut, J. Amer. Math. Soc. 21 (2008), 1-21 (electronic) Zbl1132.68070MR2350049
- Patrice Assouad, Espaces métriques, plongements, facteurs, (1977), U.E.R. Mathématique, Université Paris XI, Orsay Zbl0396.46035MR644642
- Patrice Assouad, Plongements lipschitziens dans , Bull. Soc. Math. France 111 (1983), 429-448 Zbl0597.54015MR763553
- J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math. 52 (1985), 46-52 Zbl0657.46013MR815600
- J. Bourgain, The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math. 56 (1986), 222-230 Zbl0643.46013MR880292
- Jean Bretagnolle, Didier Dacunha-Castelle, Jean-Louis Krivine, Lois stables et espaces , Ann. Inst. H. Poincaré Sect. B (N.S.) 2 (1965/1966), 231-259 Zbl0139.33501MR203757
- Jeff Cheeger, Bruce Kleiner, Differentiating maps into , and the geometry of BV functions Zbl1194.22009
- Jeff Cheeger, Bruce Kleiner, On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces, Inspired by S. S. Chern 11 (2006), 129-152, World Sci. Publ., Hackensack, NJ Zbl1139.58004MR2313333
- Ennio De Giorgi, Nuovi teoremi relativi alle misure -dimensionali in uno spazio ad dimensioni, Ricerche Mat. 4 (1955), 95-113 Zbl0066.29903MR74499
- Michel Marie Deza, Monique Laurent, Geometry of cuts and metrics, 15 (1997), Springer-Verlag, Berlin Zbl0885.52001MR1460488
- Per Enflo, On the nonexistence of uniform homeomorphisms between -spaces, Ark. Mat. 8 (1969), 103-105 (1969) Zbl0196.14002MR271719
- Bruno Franchi, Raul Serapioni, Francesco Serra Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003), 421-466 Zbl1064.49033MR1984849
- Michel X. Goemans, Semidefinite programming in combinatorial optimization, Math. Programming 79 (1997), 143-161 Zbl0887.90139MR1464765
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) 182 (1993), 1-295, Cambridge Univ. Press, Cambridge Zbl0841.20039MR1253544
- M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (2003), 73-146 Zbl1122.20021MR1978492
- Juha Heinonen, Pekka Koskela, From local to global in quasiconformal structures, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), 554-556 Zbl0842.30016MR1372507
- M. Ĭ. Kadecʼ, On the connection between weak and strong convergence, Dopovidi Akad. Nauk Ukraïn. RSR 1959 (1959), 949-952 Zbl0086.09301MR112021
- Shizuo Kakutani, Mean ergodic theorem in abstract -spaces, Proc. Imp. Acad., Tokyo 15 (1939), 121-123 Zbl0021.41304MR354
- Subhash Khot, Nisheeth K. Vishnoi, The Unique Games Conjecture, Integrality Gap for Cut Problems and the Embeddability of Negative Type Metrics into ., 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005) (2005), 53-62, SocietyIEEE ComputerI. C., Los Alamitos, CA Zbl1321.68316
- V. Klee, Mappings into normed linear spaces, Fund. Math. 49 (1960/1961), 25-34 Zbl0117.08303MR126690
- James Lee, Assaf Naor, metrics on the Heisenberg group and the Goemans-Linial conjecture, 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006) (2005), 99-108,, SocietyIEEE ComputerI. C., Los Alamitos, CA
- Nathan Linial, Squared metrics into , Open Problems (2002), MatousekJ.J., Haifa
- Nathan Linial, Eran London, Yuri Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica 15 (1995), 215-245 Zbl0827.05021MR1337355
- Scott D. Pauls, The large scale geometry of nilpotent Lie groups, Comm. Anal. Geom. 9 (2001), 951-982 Zbl1005.53033MR1883722
- Stephen Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about -weights, Rev. Mat. Iberoamericana 12 (1996), 337-410 Zbl0858.46017MR1402671
- Romain Tessera, Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces Zbl1274.43009
- Guoliang Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), 201-240 Zbl0956.19004MR1728880
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.