Inverse Scattering for Waveguides

Hiroshi Isozaki[1]; Yaroslav Kurylev[2]; Matti Lassas[3]

  • [1] University of Tsukuba Institute of Mathematics Tsukuba, 305-8571 (Japan)
  • [2] University College of London Department of Mathematics United Kingdom
  • [3] Helsinki University of Technology Department of Mathematics Finland

Séminaire de théorie spectrale et géométrie (2006-2007)

  • Volume: 25, page 71-83
  • ISSN: 1624-5458

Abstract

top
We study the inverse scattering problem for a waveguide ( M , g ) with cylindrical ends, M = M c α = 1 N ( Ω α × ( 0 , ) ) , where each Ω α × ( 0 , ) has a product type metric. We prove, that the physical scattering matrix, measured on just one of these ends, determines ( M , g ) up to an isometry.

How to cite

top

Isozaki, Hiroshi, Kurylev, Yaroslav, and Lassas, Matti. "Inverse Scattering for Waveguides." Séminaire de théorie spectrale et géométrie 25 (2006-2007): 71-83. <http://eudml.org/doc/11231>.

@article{Isozaki2006-2007,
abstract = {We study the inverse scattering problem for a waveguide $(M, \{\bf g\})$ with cylindrical ends, $M=M^c \cup \left(\cup _\{\alpha =1\}^\{N\} (\Omega ^\{\alpha \} \times (0, \infty ))\right)$, where each $\Omega ^\{\alpha \} \times (0, \infty )$ has a product type metric. We prove, that the physical scattering matrix, measured on just one of these ends, determines $(M, \{\bf g\})$ up to an isometry.},
affiliation = {University of Tsukuba Institute of Mathematics Tsukuba, 305-8571 (Japan); University College of London Department of Mathematics United Kingdom; Helsinki University of Technology Department of Mathematics Finland},
author = {Isozaki, Hiroshi, Kurylev, Yaroslav, Lassas, Matti},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {inverse scattering problem; Riemannian manifolds with cylindrical ends; waveguides},
language = {eng},
pages = {71-83},
publisher = {Institut Fourier},
title = {Inverse Scattering for Waveguides},
url = {http://eudml.org/doc/11231},
volume = {25},
year = {2006-2007},
}

TY - JOUR
AU - Isozaki, Hiroshi
AU - Kurylev, Yaroslav
AU - Lassas, Matti
TI - Inverse Scattering for Waveguides
JO - Séminaire de théorie spectrale et géométrie
PY - 2006-2007
PB - Institut Fourier
VL - 25
SP - 71
EP - 83
AB - We study the inverse scattering problem for a waveguide $(M, {\bf g})$ with cylindrical ends, $M=M^c \cup \left(\cup _{\alpha =1}^{N} (\Omega ^{\alpha } \times (0, \infty ))\right)$, where each $\Omega ^{\alpha } \times (0, \infty )$ has a product type metric. We prove, that the physical scattering matrix, measured on just one of these ends, determines $(M, {\bf g})$ up to an isometry.
LA - eng
KW - inverse scattering problem; Riemannian manifolds with cylindrical ends; waveguides
UR - http://eudml.org/doc/11231
ER -

References

top
  1. Berard P., Besson G., Gallot S. Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal, 4 (1994), 373-398. Zbl0806.53044MR1280119
  2. Christiansen T., Scattering theory for manifolds with asymptotically cylindrical ends, J. Funct. Anal. 131 (1995), 499-530. Zbl0837.58034MR1345040
  3. Christiansen T. and Zworski R., Spectral asymptotics for m anifolds with cylindrical ends, Ann. Inst. Fourier (Grenoble), 45 (1995), 251-263. Zbl0818.58046MR1324132
  4. Colin de Verdière, Y., Une nouvelle démonstration du prolonement méromorphe des série d’ Eisenstein, C. R. Acad. Sc. Paris, t. 293 (1981), 361-363. Zbl0478.30035
  5. Dediu S., McLaughlin J. Recovering inhomogeneities in a wave guide using eigensystem decomposition, Inverse Problems 32 (2006), 1226-1246. Zbl1112.76066MR2249462
  6. Eidus D., Completeness properties of scattering problem solutions. Comm. PDE 7 (1982), 55–75. Zbl0505.35068MR643157
  7. Eskin G., Ralston J., Yamamoto M., Inverse scattering for gratings and wave guides. Preprint: arXiv:0704.2274v1 Zbl1151.35429
  8. Faddeev L.D., The inverse problem in the quantum theory of scattering. II. (Russian) Current problems in mathematics, 3 (Russian), (1974), 93–180. Zbl0299.35027MR523015
  9. Gilbert R.P., Mawata C., Xu Y., Determination of a distributed inhomogeneity in a two-layered waveguide from scatteed sound, in: Direct and Inverse Problems of Mathematical Physics, ed. Gilbert R. et al, Kluwer, 2000. Zbl0964.35177MR1766294
  10. Goldstein C., Eigenfunction expansions associated with the Laplacian for certain domains with infinte boundaries, Trans. A. M. S. 135 (1969), 1-50. Zbl0174.41703MR234140
  11. Goldstein C., Meromorphic continuation of the S-matrix for the operator - Δ actying in a cylinder, Proc. A. M. S. 42 (1974), 555-562. Zbl0276.35028MR355687
  12. Isakov V. and Nachman A., Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347 (1995), 3375–3390 Zbl0849.35148MR1311909
  13. Isozaki H., Kurylev Y. and Lassas M., Spectral and scattering properties for the compound waveguides with asymptotially cylindirical ends, in preparation. 
  14. Khenkin G.M., Novikov R., The ¯ -equation in the multidimensional inverse scattering problem. (Russian), Usp. Mat. Nauk 42 (1987), 93–152 Zbl0674.35085MR896879
  15. Kachalov A., Kurylev Ya., Lassas M., Inverse Boundary Spectral Problems, Chapman Hall / CRC 123, 2001. Zbl1037.35098MR1889089
  16. Kachalov A., Kurylev Y., Lassas M., Energy measurements and equivalence of boundary data for inverse problems on non-compact manifolds. IMA volumes in Mathematics and Applications (Springer Verlag) Geometric Methods in Inverse Problems and PDE Control, Ed. C. Croke, I. Lasiecka, G. Uhlmann, M. Vogelius, 2004, pp. 183-214. Zbl1061.35166MR2169904
  17. Lyford W.C., Spectral analysis of the Laplacian in domains with cylinders, Math. Ann, 218 (1975), 229-251. Zbl0313.35060MR387833
  18. Lyford W.C., Asymptotic energy propagation and scattering of waves in waveguides with cylinders, Math. Ann, 219 (1976), 193-212. Zbl0318.35056MR430558
  19. Melrose R. B., Geometric Scattering Theory. Cambridge University Press, Cambridge (1995), 116 pp. Zbl0849.58071MR1350074
  20. Nachman A., Sylvester J., Uhlmann G., An n -dimensional Borg-Levinson theorem. Comm. Math. Phys. 115 (1988), 595–605. Zbl0644.35095MR933457
  21. Sylvester J., Uhlmann G., A global uniqueness theorem for an inverse boundary value problem. Ann. Math., 125 (1987), 153–169. Zbl0625.35078MR873380
  22. Wilcox C., Spectral and asymptotic analysis of acoustic wave propagation, in: Boundary value problems for linear evolution: partial differential equations, NATO Advanced Study Inst. Ser., Ser. C: Math. and Phys. Sci., 29, Reidel, Dordrecht, (1977), 386-473. Zbl0359.35059MR460901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.