Inverse Scattering for Waveguides
Hiroshi Isozaki[1]; Yaroslav Kurylev[2]; Matti Lassas[3]
- [1] University of Tsukuba Institute of Mathematics Tsukuba, 305-8571 (Japan)
- [2] University College of London Department of Mathematics United Kingdom
- [3] Helsinki University of Technology Department of Mathematics Finland
Séminaire de théorie spectrale et géométrie (2006-2007)
- Volume: 25, page 71-83
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topIsozaki, Hiroshi, Kurylev, Yaroslav, and Lassas, Matti. "Inverse Scattering for Waveguides." Séminaire de théorie spectrale et géométrie 25 (2006-2007): 71-83. <http://eudml.org/doc/11231>.
@article{Isozaki2006-2007,
abstract = {We study the inverse scattering problem for a waveguide $(M, \{\bf g\})$ with cylindrical ends, $M=M^c \cup \left(\cup _\{\alpha =1\}^\{N\} (\Omega ^\{\alpha \} \times (0, \infty ))\right)$, where each $\Omega ^\{\alpha \} \times (0, \infty )$ has a product type metric. We prove, that the physical scattering matrix, measured on just one of these ends, determines $(M, \{\bf g\})$ up to an isometry.},
affiliation = {University of Tsukuba Institute of Mathematics Tsukuba, 305-8571 (Japan); University College of London Department of Mathematics United Kingdom; Helsinki University of Technology Department of Mathematics Finland},
author = {Isozaki, Hiroshi, Kurylev, Yaroslav, Lassas, Matti},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {inverse scattering problem; Riemannian manifolds with cylindrical ends; waveguides},
language = {eng},
pages = {71-83},
publisher = {Institut Fourier},
title = {Inverse Scattering for Waveguides},
url = {http://eudml.org/doc/11231},
volume = {25},
year = {2006-2007},
}
TY - JOUR
AU - Isozaki, Hiroshi
AU - Kurylev, Yaroslav
AU - Lassas, Matti
TI - Inverse Scattering for Waveguides
JO - Séminaire de théorie spectrale et géométrie
PY - 2006-2007
PB - Institut Fourier
VL - 25
SP - 71
EP - 83
AB - We study the inverse scattering problem for a waveguide $(M, {\bf g})$ with cylindrical ends, $M=M^c \cup \left(\cup _{\alpha =1}^{N} (\Omega ^{\alpha } \times (0, \infty ))\right)$, where each $\Omega ^{\alpha } \times (0, \infty )$ has a product type metric. We prove, that the physical scattering matrix, measured on just one of these ends, determines $(M, {\bf g})$ up to an isometry.
LA - eng
KW - inverse scattering problem; Riemannian manifolds with cylindrical ends; waveguides
UR - http://eudml.org/doc/11231
ER -
References
top- Berard P., Besson G., Gallot S. Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal, 4 (1994), 373-398. Zbl0806.53044MR1280119
- Christiansen T., Scattering theory for manifolds with asymptotically cylindrical ends, J. Funct. Anal. 131 (1995), 499-530. Zbl0837.58034MR1345040
- Christiansen T. and Zworski R., Spectral asymptotics for m anifolds with cylindrical ends, Ann. Inst. Fourier (Grenoble), 45 (1995), 251-263. Zbl0818.58046MR1324132
- Colin de Verdière, Y., Une nouvelle démonstration du prolonement méromorphe des série d’ Eisenstein, C. R. Acad. Sc. Paris, t. 293 (1981), 361-363. Zbl0478.30035
- Dediu S., McLaughlin J. Recovering inhomogeneities in a wave guide using eigensystem decomposition, Inverse Problems 32 (2006), 1226-1246. Zbl1112.76066MR2249462
- Eidus D., Completeness properties of scattering problem solutions. Comm. PDE 7 (1982), 55–75. Zbl0505.35068MR643157
- Eskin G., Ralston J., Yamamoto M., Inverse scattering for gratings and wave guides. Preprint: arXiv:0704.2274v1 Zbl1151.35429
- Faddeev L.D., The inverse problem in the quantum theory of scattering. II. (Russian) Current problems in mathematics, 3 (Russian), (1974), 93–180. Zbl0299.35027MR523015
- Gilbert R.P., Mawata C., Xu Y., Determination of a distributed inhomogeneity in a two-layered waveguide from scatteed sound, in: Direct and Inverse Problems of Mathematical Physics, ed. Gilbert R. et al, Kluwer, 2000. Zbl0964.35177MR1766294
- Goldstein C., Eigenfunction expansions associated with the Laplacian for certain domains with infinte boundaries, Trans. A. M. S. 135 (1969), 1-50. Zbl0174.41703MR234140
- Goldstein C., Meromorphic continuation of the S-matrix for the operator actying in a cylinder, Proc. A. M. S. 42 (1974), 555-562. Zbl0276.35028MR355687
- Isakov V. and Nachman A., Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347 (1995), 3375–3390 Zbl0849.35148MR1311909
- Isozaki H., Kurylev Y. and Lassas M., Spectral and scattering properties for the compound waveguides with asymptotially cylindirical ends, in preparation.
- Khenkin G.M., Novikov R., The -equation in the multidimensional inverse scattering problem. (Russian), Usp. Mat. Nauk 42 (1987), 93–152 Zbl0674.35085MR896879
- Kachalov A., Kurylev Ya., Lassas M., Inverse Boundary Spectral Problems, Chapman Hall / CRC 123, 2001. Zbl1037.35098MR1889089
- Kachalov A., Kurylev Y., Lassas M., Energy measurements and equivalence of boundary data for inverse problems on non-compact manifolds. IMA volumes in Mathematics and Applications (Springer Verlag) Geometric Methods in Inverse Problems and PDE Control, Ed. C. Croke, I. Lasiecka, G. Uhlmann, M. Vogelius, 2004, pp. 183-214. Zbl1061.35166MR2169904
- Lyford W.C., Spectral analysis of the Laplacian in domains with cylinders, Math. Ann, 218 (1975), 229-251. Zbl0313.35060MR387833
- Lyford W.C., Asymptotic energy propagation and scattering of waves in waveguides with cylinders, Math. Ann, 219 (1976), 193-212. Zbl0318.35056MR430558
- Melrose R. B., Geometric Scattering Theory. Cambridge University Press, Cambridge (1995), 116 pp. Zbl0849.58071MR1350074
- Nachman A., Sylvester J., Uhlmann G., An -dimensional Borg-Levinson theorem. Comm. Math. Phys. 115 (1988), 595–605. Zbl0644.35095MR933457
- Sylvester J., Uhlmann G., A global uniqueness theorem for an inverse boundary value problem. Ann. Math., 125 (1987), 153–169. Zbl0625.35078MR873380
- Wilcox C., Spectral and asymptotic analysis of acoustic wave propagation, in: Boundary value problems for linear evolution: partial differential equations, NATO Advanced Study Inst. Ser., Ser. C: Math. and Phys. Sci., 29, Reidel, Dordrecht, (1977), 386-473. Zbl0359.35059MR460901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.