Spectral asymptotics for manifolds with cylindrical ends

Tanya Christiansen; Maciej Zworski

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 1, page 251-263
  • ISSN: 0373-0956

Abstract

top
The spectrum of the Laplacian on manifolds with cylindrical ends consists of continuous spectrum of locally finite multiplicity and embedded eigenvalues. We prove a Weyl-type asymptotic formula for the sum of the number of embedded eigenvalues and the scattering phase. In particular, we obtain the optimal upper bound on the number of embedded eigenvalues less than or equal to r 2 , 𝒪 ( r n ) , where n is the dimension of the manifold.

How to cite

top

Christiansen, Tanya, and Zworski, Maciej. "Spectral asymptotics for manifolds with cylindrical ends." Annales de l'institut Fourier 45.1 (1995): 251-263. <http://eudml.org/doc/75116>.

@article{Christiansen1995,
abstract = {The spectrum of the Laplacian on manifolds with cylindrical ends consists of continuous spectrum of locally finite multiplicity and embedded eigenvalues. We prove a Weyl-type asymptotic formula for the sum of the number of embedded eigenvalues and the scattering phase. In particular, we obtain the optimal upper bound on the number of embedded eigenvalues less than or equal to $r^2,~\{\cal O\} (r^n)$, where $n$ is the dimension of the manifold.},
author = {Christiansen, Tanya, Zworski, Maciej},
journal = {Annales de l'institut Fourier},
keywords = {spectral asymptotics},
language = {eng},
number = {1},
pages = {251-263},
publisher = {Association des Annales de l'Institut Fourier},
title = {Spectral asymptotics for manifolds with cylindrical ends},
url = {http://eudml.org/doc/75116},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Christiansen, Tanya
AU - Zworski, Maciej
TI - Spectral asymptotics for manifolds with cylindrical ends
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 1
SP - 251
EP - 263
AB - The spectrum of the Laplacian on manifolds with cylindrical ends consists of continuous spectrum of locally finite multiplicity and embedded eigenvalues. We prove a Weyl-type asymptotic formula for the sum of the number of embedded eigenvalues and the scattering phase. In particular, we obtain the optimal upper bound on the number of embedded eigenvalues less than or equal to $r^2,~{\cal O} (r^n)$, where $n$ is the dimension of the manifold.
LA - eng
KW - spectral asymptotics
UR - http://eudml.org/doc/75116
ER -

References

top
  1. [1] M. Sh. BIRMAN and M.G. KREIN, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 (1962), 475-478. Zbl0196.45004MR25 #2447
  2. [2] T. CHRISTIANSEN, Scattering theory for manifolds with asymptotically cylindrical ends, J. Funct. Anal. (to appear). Zbl0837.58034
  3. [3] Y. COLIN DE VERDIÈRE, Pseudo Laplaciens, II, Ann. Inst. Fourier, 33-2 (1983), 89-113. Zbl0496.58016MR84k:58222
  4. [4] H. DONNELLY, Eigenvalue estimates for certain noncompact manifolds, Michigan Math. J., 31 (1984), 349-357. Zbl0591.58033MR86d:58120
  5. [5] R. FROESE and M. ZWORSKI, Finite volume surfaces with resonances far from the unitarity axis, Int. Math. Research Notices, 10 (1993), 275-277. Zbl0797.58016MR94i:58200
  6. [6] B. HELFFER, Semi-classical analysis for the Schrödinger operator and applications, Springer-Verlag, Berlin, 1980. 
  7. [7] L. HÖRMANDER, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. Zbl0164.13201MR58 #29418
  8. [8] P. LAX and R. PHILLIPS, Scattering theory for automorpic functions, Ann. of Math. Studies, 87, Princeton University Press, 1976. Zbl0362.10022MR58 #27768
  9. [9] R.B. MELROSE, Weyl asymptotics for the phase in obstacle scattering, Comm. P.D.E., 13 (1988), 1421-1439. Zbl0686.35089MR90a:35183
  10. [10] R.B. MELROSE, The Atiyah-Patodi-Singer index theorem, A.K. Peters, Wellesley, 1993. Zbl0796.58050MR96g:58180
  11. [11] W. MÜLLER, Spectral geometry and scattering theory for certain complete surfaces of finite volume, Inv. Math., 109 (1992), 265-305. Zbl0772.58063MR93g:58151
  12. [12] S. PATTERSON, The Selberg zeta function of a Kleinian group, in "Number theory, trace formulas and discrete group", p. 409-441, Academic Press, Boston, 1989. Zbl0668.10036MR91c:11029
  13. [13] P. PERRY, The Selberg zeta function and a local trace formula for Kleinian groups, J. Reine Angew. Math., 410 (1990), 116-152. Zbl0697.10027MR92e:11057
  14. [14] D. ROBERT, A trace formula for obstacle problems and applications, to appear in "Mathematical results in quantum mechanics", Blossin Conference Proc., Berlin, 1993. Zbl0818.35074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.