The Oka-Weil theorem in locally convex spaces with the approximation property

Jorge Mujica

Séminaire Paul Krée (1977-1978)

  • Volume: 4, page 1-7

How to cite

top

Mujica, Jorge. "The Oka-Weil theorem in locally convex spaces with the approximation property." Séminaire Paul Krée 4 (1977-1978): 1-7. <http://eudml.org/doc/112848>.

@article{Mujica1977-1978,
author = {Mujica, Jorge},
journal = {Séminaire Paul Krée},
keywords = {Oka-Weil Theorem; Polynomially Convex Compact Set; Strong Approximation Property; Frechet Space; Quasicomplete Locally Convex Space},
language = {eng},
pages = {1-7},
publisher = {Secrétariat mathématique},
title = {The Oka-Weil theorem in locally convex spaces with the approximation property},
url = {http://eudml.org/doc/112848},
volume = {4},
year = {1977-1978},
}

TY - JOUR
AU - Mujica, Jorge
TI - The Oka-Weil theorem in locally convex spaces with the approximation property
JO - Séminaire Paul Krée
PY - 1977-1978
PB - Secrétariat mathématique
VL - 4
SP - 1
EP - 7
LA - eng
KW - Oka-Weil Theorem; Polynomially Convex Compact Set; Strong Approximation Property; Frechet Space; Quasicomplete Locally Convex Space
UR - http://eudml.org/doc/112848
ER -

References

top
  1. [1] Ligocka ( E.). - A local factorization of analytic functions and its applications, Studia math., t. 47, 1973, p. 239-252. Zbl0261.46006MR348496
  2. [2] Mujica ( J.). - Spaces of germs of holomorphic functions, Advances in Math. (to appear). Zbl0489.46020MR546801
  3. [3] Mujica ( J.). - Ideals of holomorphic functions on Fréchet spaces, "Advances in holomorphy". - Amsterdam, North-Holland publishing Company (Notas de Matematica) (to appear). Zbl0399.46035MR520675
  4. [4] Nachbin ( L.). - Topology on spaces of holomorphic mappings. - New York, Springer-Verlag, 1969 (Ergebnisse der Mathematik, 47). Zbl0172.39902MR254579
  5. [5] Noverraz ( P.). - Sur la pseudo-convexité et la connexité polynomiale en dimension infinie, Ann. Inst. Fourier, Grenoble, t. 23, 1973, p. 113-134. Zbl0281.32021MR341091
  6. [6] Noverraz ( P.). - Pseudo-convexité, convexité palynomiale et domaines d'holomorphie en dimension infinie. - Amsterdam, North-Holland publishing Company ; New York, American Elsevier publishing Company, 1973 (North-Holland Mathematics Studies, 3 ; Notas de Matematica, 48). Zbl0251.46049MR358348
  7. [7] Schottenloher ( M.). - Polynomial approximation on compact sets, "Infinite dimensional holomorphy and applications [Sao Paulo, 1975]", p. 379-391. - Amsterdam, North-Holland publishing Company, 1977 (North-Holland Mathematics Studies, 12 ; Notas de Matematica, 54). Zbl0397.46044MR463504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.