The Oka-Weil theorem in locally convex spaces with the approximation property
Séminaire Paul Krée (1977-1978)
- Volume: 4, page 1-7
Access Full Article
topHow to cite
topMujica, Jorge. "The Oka-Weil theorem in locally convex spaces with the approximation property." Séminaire Paul Krée 4 (1977-1978): 1-7. <http://eudml.org/doc/112848>.
@article{Mujica1977-1978,
author = {Mujica, Jorge},
journal = {Séminaire Paul Krée},
keywords = {Oka-Weil Theorem; Polynomially Convex Compact Set; Strong Approximation Property; Frechet Space; Quasicomplete Locally Convex Space},
language = {eng},
pages = {1-7},
publisher = {Secrétariat mathématique},
title = {The Oka-Weil theorem in locally convex spaces with the approximation property},
url = {http://eudml.org/doc/112848},
volume = {4},
year = {1977-1978},
}
TY - JOUR
AU - Mujica, Jorge
TI - The Oka-Weil theorem in locally convex spaces with the approximation property
JO - Séminaire Paul Krée
PY - 1977-1978
PB - Secrétariat mathématique
VL - 4
SP - 1
EP - 7
LA - eng
KW - Oka-Weil Theorem; Polynomially Convex Compact Set; Strong Approximation Property; Frechet Space; Quasicomplete Locally Convex Space
UR - http://eudml.org/doc/112848
ER -
References
top- [1] Ligocka ( E.). - A local factorization of analytic functions and its applications, Studia math., t. 47, 1973, p. 239-252. Zbl0261.46006MR348496
- [2] Mujica ( J.). - Spaces of germs of holomorphic functions, Advances in Math. (to appear). Zbl0489.46020MR546801
- [3] Mujica ( J.). - Ideals of holomorphic functions on Fréchet spaces, "Advances in holomorphy". - Amsterdam, North-Holland publishing Company (Notas de Matematica) (to appear). Zbl0399.46035MR520675
- [4] Nachbin ( L.). - Topology on spaces of holomorphic mappings. - New York, Springer-Verlag, 1969 (Ergebnisse der Mathematik, 47). Zbl0172.39902MR254579
- [5] Noverraz ( P.). - Sur la pseudo-convexité et la connexité polynomiale en dimension infinie, Ann. Inst. Fourier, Grenoble, t. 23, 1973, p. 113-134. Zbl0281.32021MR341091
- [6] Noverraz ( P.). - Pseudo-convexité, convexité palynomiale et domaines d'holomorphie en dimension infinie. - Amsterdam, North-Holland publishing Company ; New York, American Elsevier publishing Company, 1973 (North-Holland Mathematics Studies, 3 ; Notas de Matematica, 48). Zbl0251.46049MR358348
- [7] Schottenloher ( M.). - Polynomial approximation on compact sets, "Infinite dimensional holomorphy and applications [Sao Paulo, 1975]", p. 379-391. - Amsterdam, North-Holland publishing Company, 1977 (North-Holland Mathematics Studies, 12 ; Notas de Matematica, 54). Zbl0397.46044MR463504
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.