Page 1 Next

Displaying 1 – 20 of 390

Showing per page

A compact set without Markov’s property but with an extension operator for C -functions

Alexander Goncharov (1996)

Studia Mathematica

We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator L : ( K ) C [ 0 , 1 ] . At the same time, Markov’s inequality is not satisfied for certain polynomials on K.

A contribution to the topological classification of the spaces Ср(X)

Robert Cauty, Tadeusz Dobrowolski, Witold Marciszewski (1993)

Fundamenta Mathematicae

We prove that for each countably infinite, regular space X such that C p ( X ) is a Z σ -space, the topology of C p ( X ) is determined by the class F 0 ( C p ( X ) ) of spaces embeddable onto closed subsets of C p ( X ) . We show that C p ( X ) , whenever Borel, is of an exact multiplicative class; it is homeomorphic to the absorbing set Ω α for the multiplicative Borel class M α if F 0 ( C p ( X ) ) = M α . For each ordinal α ≥ 2, we provide an example X α such that C p ( X α ) is homeomorphic to Ω α .

A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ

Witold Marciszewski (1997)

Fundamenta Mathematicae

We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions c p ( X ) onto c p ( X ) × ℝ . I n p a r t i c u l a r , cp(X) i s n o t l i n e a r l y h o m e o m o r p h i c t o cp(X) × . One of these examples is compact. This answers some questions of Arkhangel’skiĭ.

A general approximation theorem of Whitney type.

Michael Langenbruch (2003)


We show that Whitney?s approximation theorem holds in a general setting including spaces of (ultra)differentiable functions and ultradistributions. This is used to obtain real analytic modifications for differentiable functions including optimal estimates. Finally, a surjectivity criterion for continuous linear operators between Fréchet sheaves is deduced, which can be applied to the boundary value problem for holomorphic functions and to convolution operators in spaces of ultradifferentiable functions...

A Hilbert cube compactification of the function space with the compact-open topology

Atsushi Kogasaka, Katsuro Sakai (2009)

Open Mathematics

Let X be an infinite, locally connected, locally compact separable metrizable space. The space C(X) of real-valued continuous functions defined on X with the compact-open topology is a separable Fréchet space, so it is homeomorphic to the psuedo-interior s = (−1, 1)ℕ of the Hilbert cube Q = [−1, 1]ℕ. In this paper, generalizing the Sakai-Uehara’s result to the non-compact case, we construct a natural compactification C ¯ (X) of C(X) such that the pair ( C ¯ (X), C(X)) is homeomorphic to (Q, s). In case...

A note on composition operators on spaces of real analytic functions

Paweł Domański, Michał Goliński, Michael Langenbruch (2012)

Annales Polonici Mathematici

We characterize composition operators on spaces of real analytic functions which are open onto their images. We give an example of a semiproper map φ such that the associated composition operator is not open onto its image.

A remark on complex powers of analytic functions

Giuseppe Zampieri (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia K n un compatto, f 0 una funzione analitica all'intorno di K , ed m la massima molteplicità in K degli zeri di f ; si prova che la potenza f λ ( λ , R e λ > 1 m ) è integrabile in K . L'estensione meromorfa dell'applicazione λ f λ da R e λ > 0 a tutto (con valori in 𝒟 ( K ) anziché in L 1 ( K ) ) era già stata provata in [1] e [2].

Currently displaying 1 – 20 of 390

Page 1 Next