Mesure de Hausdorff de la trajectoire de certains processus à accroissements indépendants et stationnaires

Claire Dupuis

Séminaire de probabilités de Strasbourg (1974)

  • Volume: 8, page 37-77

How to cite

top

Dupuis, Claire. "Mesure de Hausdorff de la trajectoire de certains processus à accroissements indépendants et stationnaires." Séminaire de probabilités de Strasbourg 8 (1974): 37-77. <http://eudml.org/doc/113020>.

@article{Dupuis1974,
author = {Dupuis, Claire},
journal = {Séminaire de probabilités de Strasbourg},
language = {fre},
pages = {37-77},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Mesure de Hausdorff de la trajectoire de certains processus à accroissements indépendants et stationnaires},
url = {http://eudml.org/doc/113020},
volume = {8},
year = {1974},
}

TY - JOUR
AU - Dupuis, Claire
TI - Mesure de Hausdorff de la trajectoire de certains processus à accroissements indépendants et stationnaires
JO - Séminaire de probabilités de Strasbourg
PY - 1974
PB - Springer - Lecture Notes in Mathematics
VL - 8
SP - 37
EP - 77
LA - fre
UR - http://eudml.org/doc/113020
ER -

References

top
  1. [1] J. BretagnolleProcessus à accroissements indépendants. Lecture Notes in Math. 307Springer Verlag, 1973. MR433608
  2. [2] J. BretagnolleRésultats de Kesten sur les processus à accroissements indépendants. Lecture Notes in Math. 191Springer Verlag, 1971. MR368175
  3. [3] Z. Ciesielski and S.J. TaylorFirst passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc.103 (1962), pp. 434-450. Zbl0121.13003MR143257
  4. [4] W. FellerAn introduction to probability theory and its applications. J. Wiley and Sons1968 (3rd edition). Zbl0155.23101MR228020
  5. [5] Paul LevyLa mesure de Hausdorff de la courbe du mouvement brownien. Giorn. Ist. Ital. Attuari16 (1953), pp. 1-37. Zbl0053.10101MR64344
  6. [6] M. LoeveProbability theory. Van Nostrand Company edition1963. Zbl0108.14202MR203748
  7. [7] M.E. MunroeMeasure and Integration. Addison-Wesley Publishing Company, 1971 (2nd edition). Zbl0227.28001MR352379
  8. [8] W.E. Pruitt and S.J. TaylorSample path properties of processes with stable components. Z. Wahrscheinlichkeitstheorie12 (1969), pp. 267-289. Zbl0181.21103MR258126
  9. [9] D. RaySojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion. Trans. Amer. Math. Soc.106 (1963), pp. 436-444. Zbl0119.14602MR145599
  10. [10] C.A. RogersHausdorff Measures. Cambridge University Press, 1970. Zbl0204.37601MR281862
  11. [11] C.A. Rogers and S.J. TaylorFunctions continuous and singular with respect to a Hausdorff measure. Mathematika8 (1961), pp. 1-31. Zbl0145.28701MR130336
  12. [12] S.J. TaylorThe exact Hausdorff measure of the sample path for planar Brownian motion. Proc. Cambridge Phil. Soc.60 (1964), pp. 253-258. Zbl0149.13104MR164380
  13. [13] S.J. TaylorSample path properties of a transient stable process. J. Math. Mech.16 (1967), pp. 1229-1246. Zbl0178.19301MR208684

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.