A critical function for the planar brownian convex hull
We prove a polynomial growth estimate for random fields satisfying the Kolmogorov continuity test. As an application we are able to estimate the growth of the solution to the Cauchy problem for a stochastic diffusion equation.
Let (Ω, , ()t≥0, ) be a filtered probability space satisfying the usual assumptions: it is usually not possible to extend to (theσ-algebra generated by ()t≥0) a coherent family of probability measures () indexed byt≥0, each of them being defined on . It is known that for instance, on the Wiener space, this extension problem has a positive answer if one takes the filtration generated by the coordinate process, made right-continuous, but can have a negative answer if one takes its usual augmentation....
Let (Ω, , ()t≥0, ) be a filtered probability space satisfying the usual assumptions: it is usually not possible to extend to (the σ-algebra generated by ()t≥0) a coherent family of probability measures () indexed by t≥0, each of them being defined on . It is known that for instance, on the Wiener space, this extension problem has a positive answer if one takes the filtration generated by the coordinate process, made right-continuous, but can have a negative answer if one takes its usual...
The -finite measure which unifies supremum penalisations for a stable Lévy process is introduced. Silverstein’s coinvariant and coharmonic functions for Lévy processes and Chaumont’s -transform processes with respect to these functions are utilized for the construction of .
Given a two-dimensional fractional multiplicative process determined by two Hurst exponents and , we show that there is an associated uniform Hausdorff dimension result for the images of subsets of by if and only if .