Une classe de processus de Markov en mécanique relativiste. Laplaciens généralisés sur les espaces symétriques de type non compact

Marc Olivier Gebuhrer

Séminaire de probabilités de Strasbourg (1974)

  • Volume: 8, page 80-133

How to cite

top

Gebuhrer, Marc Olivier. "Une classe de processus de Markov en mécanique relativiste. Laplaciens généralisés sur les espaces symétriques de type non compact." Séminaire de probabilités de Strasbourg 8 (1974): 80-133. <http://eudml.org/doc/113022>.

@article{Gebuhrer1974,
author = {Gebuhrer, Marc Olivier},
journal = {Séminaire de probabilités de Strasbourg},
language = {fre},
pages = {80-133},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Une classe de processus de Markov en mécanique relativiste. Laplaciens généralisés sur les espaces symétriques de type non compact},
url = {http://eudml.org/doc/113022},
volume = {8},
year = {1974},
}

TY - JOUR
AU - Gebuhrer, Marc Olivier
TI - Une classe de processus de Markov en mécanique relativiste. Laplaciens généralisés sur les espaces symétriques de type non compact
JO - Séminaire de probabilités de Strasbourg
PY - 1974
PB - Springer - Lecture Notes in Mathematics
VL - 8
SP - 80
EP - 133
LA - fre
UR - http://eudml.org/doc/113022
ER -

References

top
  1. R.M. Dudley [1] Lorentz-invariant Markov processes in relativitic phare space. Arkiv för Mathematik. Band 6, n° 14 (1965-1967), pp. 241-267. Zbl0171.39105MR198540
  2. R. Gangolli [1] Isotropic infinite divisible measures on symmetric spaces. Acta Mathematica111 (1964), pp. 213-246. Zbl0154.43804MR161350
  3. Harish-Chandra [1] Spherical functions on a semi-simple Lie group II. American Journal of Mathematics80 (1958), pp. 553-613. Zbl0093.12801MR101279
  4. S. Helgason [1] Differential Geometry and symmetric spaces. Academic Press. Zbl0111.18101MR145455
  5. [2] A duality fot symmetric spaces with application to group representations. Advances in Mathematics. 5,1 (1970), pp. 1-154. Zbl0209.25403MR263988
  6. G.A. Hunt [1] Semi-groups of measures on Lie GroupsTransactions of the American Mathematical Society81 (1956), pp. 264-293. Zbl0073.12402MR79232
  7. P.A. Meyer [1] Probabilités et Potentiel. Hermann. Zbl0138.10402MR205287
  8. [2] Quelques applications des résolvantes de Ray. Inventiones Mathematica14 (1971), pp. 143-166. Zbl0224.60037MR295436
  9. Parthasarathy [1] Probability on Metric Spaces. Academic Press. 
  10. J. Walsh [1] Quelques applications des Résolvants de Ray . Inventiones Mathematica14 (1971), pp. 143-166. Zbl0224.60037MR295436
  11. [2] Some topologies connected with Lebesgue measures. Séminaire de Probabilités de Strasbourg V. Lecture Notes in Mathematics, n° 191, pp. 1298-311. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.