Phase transition and Martin boundary

Hans Föllmer

Séminaire de probabilités de Strasbourg (1975)

  • Volume: 9, page 305-317

How to cite

top

Föllmer, Hans. "Phase transition and Martin boundary." Séminaire de probabilités de Strasbourg 9 (1975): 305-317. <http://eudml.org/doc/113035>.

@article{Föllmer1975,
author = {Föllmer, Hans},
journal = {Séminaire de probabilités de Strasbourg},
language = {eng},
pages = {305-317},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Phase transition and Martin boundary},
url = {http://eudml.org/doc/113035},
volume = {9},
year = {1975},
}

TY - JOUR
AU - Föllmer, Hans
TI - Phase transition and Martin boundary
JO - Séminaire de probabilités de Strasbourg
PY - 1975
PB - Springer - Lecture Notes in Mathematics
VL - 9
SP - 305
EP - 317
LA - eng
UR - http://eudml.org/doc/113035
ER -

References

top
  1. [ 1] Dobrushin, R.L.: Description of a random field by means of conditional probabilities and conditions of its regularity. Theor. Probability Appl.13, 197-224 (1968). Zbl0184.40403MR231434
  2. [ 2] Dobrushin, R.L.and Minlos, R.A.: Construction of a one-dimensional Quantum Field via a continuous Markov Field. To appear. Zbl0294.60081MR1403091
  3. [ 3] Dunford, N. and Schwartz, J.T.: Linear Operators I. New York: Interscience1958. Zbl0084.10402MR117523
  4. [ 4] Dynkin, E.B.: Entrance and Exit Spaces for a Markov Process. Actes, Congrès intern. Math., 1970. Tome 2, 507-512 (1971). Zbl0265.60068MR426175
  5. [ 5] Dyson, F.J.: Existence of a phase-transition in a one dimensional Ising Ferromagnet. Comm. Math. Phys.12, 91 (1969). Zbl1306.47082MR436850
  6. [ 6] Föllmer, H.: The Exit Measure of a Supermartingale. Z. Wahrscheinlichkeitstheorie verw. Geb.21, 154-166 (1972). Zbl0231.60033MR309184
  7. [ 7] Georgii H.-O., : Two Remarks on Extremal Equilibrium States. Comm. Math. Phys.32, 107-118 (1970). MR426763
  8. [ 8] Guerra, F., Rosen, L., Simon, B.: The P(φ)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics. To appear. 
  9. [ 9] Meyer, P.A.: Un lemme de théorie des martingales. Sém. Probabilités III. Lecture Notes Mathematics88 (1969). 
  10. [10] Nelson, E.: The Free Markoff Field. J. Functional Analysis12, 211-227 (1973). Zbl0273.60079MR343816
  11. [11] Parathasarathy, K.R.: Probability measures on metric spaces. New York-London: Academic Press1967. Zbl0153.19101
  12. [12] Preston, C.J.: Specification of random fields. To appear. Zbl0357.60052MR488382
  13. [13] Simon, B.: Positivity of the Hamiltonian Semigroup and the Construction of Euclidean Region Fields. To appear. MR381541
  14. [14] Spitzer, F.: Random fields and interacting particle systems. Notes on lectures given at the 1971 MAA Summer Seminar, Williams College, Williamstown, Mass.Mathematical Association of America1971. MR381041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.