La loi du logarithme itéré bornée dans les espaces de Banach

Michel Ledoux

Séminaire de probabilités de Strasbourg (1981)

  • Volume: 15, page 11-37

How to cite

top

Ledoux, Michel. "La loi du logarithme itéré bornée dans les espaces de Banach." Séminaire de probabilités de Strasbourg 15 (1981): 11-37. <http://eudml.org/doc/113316>.

@article{Ledoux1981,
author = {Ledoux, Michel},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {law of the iterated logarithm; type 2 Banach spaces; almost sure convergence},
language = {fre},
pages = {11-37},
publisher = {Springer - Lecture Notes in Mathematics},
title = {La loi du logarithme itéré bornée dans les espaces de Banach},
url = {http://eudml.org/doc/113316},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Ledoux, Michel
TI - La loi du logarithme itéré bornée dans les espaces de Banach
JO - Séminaire de probabilités de Strasbourg
PY - 1981
PB - Springer - Lecture Notes in Mathematics
VL - 15
SP - 11
EP - 37
LA - fre
KW - law of the iterated logarithm; type 2 Banach spaces; almost sure convergence
UR - http://eudml.org/doc/113316
ER -

References

top
  1. [1] Bauer H. : Probability theory and elements of measure theory. Holt, Rinehart and Winston, New York (1972). Zbl0243.60004
  2. [2] Chung K.L. : A course in probability theory (second edition). Academic Press, New York (1974). Zbl0345.60003MR346858
  3. [3] Goodman V., Kuelbs J., Zinn J. : Some results on the law of the iterated ldgarithm in Banach space with applications to weighted empirical processes (1980) ; (à paraître dans les Annales de Probabilités). Zbl0472.60004MR704541
  4. [4] Heinkel B. : Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach. Z. Wahrscheinlichkeitstheorie49, 211-220 (1979). Zbl0397.60018MR543994
  5. [5] Hoffmann-Jørgensen J. : Ecole d'été de Probabilités de Saint-Flour, VI, 1976Lecture Notes in Math., 598, Berlin-Heidelberg-New York : Springer1977. Zbl0348.00009MR443008
  6. [6] Kuelbs J. : A counterexample for Banach space valued random variables. The Annals of Probability1976, vol. 4, 684-689. Zbl0364.60029MR451326
  7. [7] Kuelbs J. : Kolmogorov law of the iterated logarithm for Banach space valued random variables. Illinois J. Math.21-4, 784-800 (1977). Zbl0392.60010MR455061
  8. [8] Kuelbs J., Zinn J. : Some additional stability results for vector-valued random variables. Preprint (1980). Zbl0516.60013
  9. [9]. Pisier G. : Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach. Séminaire Maurey-Schwartz1975-76, exposés 3 et 4 . Zbl0403.60011MR517349

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.