Calcul d'Ito sans probabilités

Hans Föllmer

Séminaire de probabilités de Strasbourg (1981)

  • Volume: 15, page 143-150

How to cite

top

Föllmer, Hans. "Calcul d'Ito sans probabilités." Séminaire de probabilités de Strasbourg 15 (1981): 143-150. <http://eudml.org/doc/113318>.

@article{Föllmer1981,
author = {Föllmer, Hans},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {quadratic variation},
language = {fre},
pages = {143-150},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Calcul d'Ito sans probabilités},
url = {http://eudml.org/doc/113318},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Föllmer, Hans
TI - Calcul d'Ito sans probabilités
JO - Séminaire de probabilités de Strasbourg
PY - 1981
PB - Springer - Lecture Notes in Mathematics
VL - 15
SP - 143
EP - 150
LA - fre
KW - quadratic variation
UR - http://eudml.org/doc/113318
ER -

References

top
  1. [1] Bichteler, K.: Stochastic Integration and Lp-theory of semimartingales. Technical report No. 5, U. of Texas (1979). 
  2. [2] Dellacherie, C., et Meyer, P.A.: Probabilités et Potentiel; Théorie des Martingales. Hermann (1980). Zbl0464.60001MR566768
  3. [3] Fukushima, M.: Dirichlet forms and Markov processes. North Holland (1980). Zbl0422.31007MR569058
  4. [4] Meyer, P.A.: Un cours sur les intégrales stochastiques. Sém.Prob.X, LN511 (1976). Zbl0374.60070MR501332
  5. [5] Stricker, C.: Quasimartingales et variations. Sém.Prob.XV (1980). Zbl0456.60054MR622582

Citations in EuDML Documents

top
  1. Jean Bertoin, Temps locaux et intégration stochastique pour les processus de Dirichlet
  2. Hans-Jürgen Engelbert, Jochen Wolf, Dirichlet functions of reflected Brownian motion
  3. Hans Föllmer, Ching-Tang Wu, Marc Yor, On weak brownian motions of arbitrary order
  4. Samia Beghdadi-Sakrani, Calcul stochastique pour les mesures signées
  5. Mihai Gradinaru, Ivan Nourdin, Francesco Russo, Pierre Vallois, m-order integrals and generalized Itô's formula ; the case of a fractional brownian motion with any Hurst index
  6. Antoine Lejay, Stochastic differential equations driven by processes generated by divergence form operators I: a Wong-Zakai theorem

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.