m-order integrals and generalized Itô's formula ; the case of a fractional brownian motion with any Hurst index

Mihai Gradinaru; Ivan Nourdin; Francesco Russo; Pierre Vallois

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 4, page 781-806
  • ISSN: 0246-0203

How to cite

top

Gradinaru, Mihai, et al. "m-order integrals and generalized Itô's formula ; the case of a fractional brownian motion with any Hurst index." Annales de l'I.H.P. Probabilités et statistiques 41.4 (2005): 781-806. <http://eudml.org/doc/77867>.

@article{Gradinaru2005,
author = {Gradinaru, Mihai, Nourdin, Ivan, Russo, Francesco, Vallois, Pierre},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {781-806},
publisher = {Elsevier},
title = {m-order integrals and generalized Itô's formula ; the case of a fractional brownian motion with any Hurst index},
url = {http://eudml.org/doc/77867},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Gradinaru, Mihai
AU - Nourdin, Ivan
AU - Russo, Francesco
AU - Vallois, Pierre
TI - m-order integrals and generalized Itô's formula ; the case of a fractional brownian motion with any Hurst index
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 4
SP - 781
EP - 806
LA - eng
UR - http://eudml.org/doc/77867
ER -

References

top
  1. [1] E. Alos, J.L. Léon, D. Nualart, Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1 2 , Taiwanese J. Math.5 (2001) 609-632. Zbl0989.60054MR1849782
  2. [2] C. Bender, An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Process. Appl.124 (1) (2003) 81-106. Zbl1075.60530MR1956473
  3. [3] P. Carmona, L. Coutin, G. Monseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist.39 (1) (2003) 27-68. Zbl1016.60043MR1959841
  4. [4] P. Cheridito, D. Nualart, Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ( 0 , 1 2 ) , Preprint, Barcelona, 2002. Zbl1083.60027
  5. [5] L. Coutin, Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields122 (1) (2002) 108-140. Zbl1047.60029MR1883719
  6. [6] L. Decreusefond, A.S. Ustunel, Stochastic analysis of the fractional Brownian motion, Potential Anal.10 (1998) 177-214. Zbl0924.60034MR1677455
  7. [7] R.M. Dudley, R. Norvaisa, Differentiability of Six Operators on Nonsmooth Functions and p-variation, Lecture Notes in Math., vol. 1703, Springer-Verlag, 1999. Zbl0973.46033MR1705318
  8. [8] M. Errami, F. Russo, Covariation de convolutions de martingales, C. R. Acad. Sci. Sér. 1326 (1998) 601-609. Zbl0917.60054MR1649341
  9. [9] M. Errami, F. Russo, n-covariation and symmetric SDEs driven by finite cubic variation process, Stoch. Process. Appl.104 (2) (2000) 259-299. Zbl1075.60531MR1961622
  10. [10] D. Feyel, A. De La Pradelle, On fractional Brownian processes, Potential Anal.10 (3) (1999) 273-288. Zbl0944.60045MR1696137
  11. [11] H. Föllmer, Calcul d'Itô sans probabilités, in: Séminaire de Probabilités XV 1979/80, Lecture Notes in Math., vol. 850, Springer-Verlag, 1981, pp. 143-150. Zbl0461.60074MR622559
  12. [12] H. Föllmer, P. Protter, A.N. Shiryaev, Quadratic covariation and an extension of Itô's formula, Bernoulli1 (1995) 149-169. Zbl0851.60048MR1354459
  13. [13] M. Fukushima, T.T. Oshima, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, 1994. Zbl0838.31001MR1303354
  14. [14] M. Gradinaru, I. Nourdin, Approximation at first and second order of the m-variation of the fractional Brownian motion, Electron. J. Probab.8 (2003) 1-26, Paper 18. Zbl1063.60079MR2041819
  15. [15] M. Gradinaru, F. Russo, P. Vallois, Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index H 1 4 , Ann. Probab.31 (2003) 1772-1820. Zbl1059.60067
  16. [16] T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana14 (2) (1998) 215-310. Zbl0923.34056MR1654527
  17. [17] T.J. Lyons, W. Zheng, A crossing estimate for the canonical process on a Dirichlet space and tightness result, Astérisque157–158 (1998) 249-271. Zbl0654.60059MR976222
  18. [18] S. Nakao, Stochastic calculus for continuous additive functionals of zero energy, Wahrs. Verw. Geb.68 (1995) 557-578, (1985). Zbl0604.60068MR772199
  19. [19] I. Nourdin, PhD Thesis, Nancy, 2004. 
  20. [20] D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, 1995. Zbl0837.60050MR1344217
  21. [21] N. Privault, C. Tudor, Skorohod and pathwise stochastic calculus with respect to a L 2 - process, Random Operators and Stochastic Equations8 (3) (2000) 1-24. Zbl0973.60062MR1796673
  22. [22] F. Russo, P. Vallois, The generalized covariation process and Itô formula, Stochastic Process. Appl.59 (1995) 81-104. Zbl0840.60052MR1350257
  23. [23] F. Russo, P. Vallois, Itô formula for C 1 -functions of semimartingales, Probab. Theory Related. Fields104 (1996) 27-41. Zbl0838.60045MR1367665
  24. [24] F. Russo, P. Vallois, Stochastic calculus with respect to a finite quadratic variation process, Stochastics and Stochastics Reports70 (2000) 1-40. Zbl0981.60053MR1785063
  25. [25] J. Stoer, R. Bulirsch, R. Bartels, W. Gautschi, C. Witzgall, Introduction to Numerical Analysis, Springer-Verlag, 1983. Zbl0423.65002
  26. [26] G. Trutnau, Stochastic calculus of generalized Dirichlet forms and applications to stochastic differential equations in infinite dimensions, Osaka J. Math.37 (2) (2000) 315-343. Zbl0963.60071MR1772835
  27. [27] J. Wolf, An Itô Formula for local Dirichlet processes, Stochastics and Stochastics Reports62 (2) (1997) 103-115. Zbl0890.60044MR1489183
  28. [28] M. Yor, Sur quelques approximations d'intégrales stochastiques, in: Séminaire de Probabilités XI 1975/76, Lecture Notes in Math., vol. 581, Springer-Verlag, 1975, pp. 518-528. Zbl0367.60058MR448556
  29. [29] M. Zähle, Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields111 (1998) 333-374. Zbl0918.60037MR1640795

Citations in EuDML Documents

top
  1. Haifeng Yang, Tin Lam Toh, On Henstock-Kurzweil method to Stratonovich integral
  2. Ivan Nourdin, David Nualart, Ciprian A. Tudor, Central and non-central limit theorems for weighted power variations of fractional brownian motion
  3. Mihai Gradinaru, Ivan Nourdin, Milstein’s type schemes for fractional SDEs
  4. Franco Flandoli, Massimiliano Gubinelli, Francesco Russo, On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.