L'équation de Zakai et le problème séparé du contrôle optimal stochastique

Ulrich G. Haussmann

Séminaire de probabilités de Strasbourg (1985)

  • Volume: 19, page 37-62

How to cite

top

Haussmann, Ulrich G.. "L'équation de Zakai et le problème séparé du contrôle optimal stochastique." Séminaire de probabilités de Strasbourg 19 (1985): 37-62. <http://eudml.org/doc/113534>.

@article{Haussmann1985,
author = {Haussmann, Ulrich G.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {partially observed control problem; Zakai's equation; mild regularity and boundedness hypotheses; existence of a solution},
language = {fre},
pages = {37-62},
publisher = {Springer - Lecture Notes in Mathematics},
title = {L'équation de Zakai et le problème séparé du contrôle optimal stochastique},
url = {http://eudml.org/doc/113534},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Haussmann, Ulrich G.
TI - L'équation de Zakai et le problème séparé du contrôle optimal stochastique
JO - Séminaire de probabilités de Strasbourg
PY - 1985
PB - Springer - Lecture Notes in Mathematics
VL - 19
SP - 37
EP - 62
LA - fre
KW - partially observed control problem; Zakai's equation; mild regularity and boundedness hypotheses; existence of a solution
UR - http://eudml.org/doc/113534
ER -

References

top
  1. [1] J.S. Baras, G.L. Blankenship et W.E. Hopkins. Existence, uniqueness and asymptotic behavior of solutions to a class of Zakai equations with unbounded coefficients, IEEE Trans. A.C., 28(1983), 203-214. Zbl0535.93063MR711678
  2. [2] J.S. Baras, G.L. Blankenship et S.K. Mitter. Non linear filtering of diffusion processes, Proc. IFAC Congr., Kyoto, Japan, 1981. Zbl0522.93059
  3. [3] V.E. Benes et I. Karatzas. On the relation of Zakai's equation and Mortensen's equation, SIAM J. Control and Optimization, 21 (1983), 472 - 489. Zbl0518.93062MR696909
  4. [4] A. Bensoussan. Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions, Stochastics, 9 (1983), 169 - 222. Zbl0516.60072MR705471
  5. [5] A. Bensoussan et J.L. Lions. Applications des Inéquations Variationnelles en Contrôle Stochastique, Dunod, Paris, 1978. Zbl0411.49002MR513618
  6. [6] G.S. Ferreyra. The robust equation of non linear filtering, preprint, Dept. of Mathematics, Louisiana State University. MR788001
  7. [7] W.H. Fleming et R.W. Rishel. Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, 1975. Zbl0323.49001MR454768
  8. [8] U.G. Haussmann. Optimal control of partially observed diffusions via the separation principle, Stochastic Differential Systems,Lecture Notes in Control and Information Sciences, Vol. 43 (1982), 302-311 . Zbl0523.93065MR814127
  9. [9] G. Kallianpur et R.L. Karandikar. A finitely additive white noise approach to nonlinear filtering, Appl.Math. Optim, 10 (1983), 159 - 185. Zbl0525.93063MR707547
  10. [10] E. Pardoux. Equation du filtrage non linéaire de la prédiction et du lissage, Stochastics, 6 (1982), 193 - 231. Zbl0491.93062MR665400
  11. [11] E. Pardoux. Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3 (1979), 127 - 167. Zbl0424.60067MR553909
  12. [12] S.J. Sheu. Solutions of certain parabolic equations with unbounded coefficients and its application to nonlinear filtering, Stochastics, 10 (1983), 31 - 46. Zbl0533.60068MR714706
  13. [13] D. Stroock et S.R.S. Varadhan. Multidimensional Diffusion Processes, Springer - Verlag, 1979. Zbl0426.60069MR532498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.