Construction de l'opérateur de Malliavin sur l'espace de Poisson

Li-Ming Wu

Séminaire de probabilités de Strasbourg (1987)

  • Volume: 21, page 100-113

How to cite

top

Wu, Li-Ming. "Construction de l'opérateur de Malliavin sur l'espace de Poisson." Séminaire de probabilités de Strasbourg 21 (1987): 100-113. <http://eudml.org/doc/113585>.

@article{Wu1987,
author = {Wu, Li-Ming},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {symmetric diffusion semigroup; Malliavin operator; Malliavin calculus of variations for processes with jumps},
language = {fre},
pages = {100-113},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Construction de l'opérateur de Malliavin sur l'espace de Poisson},
url = {http://eudml.org/doc/113585},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Wu, Li-Ming
TI - Construction de l'opérateur de Malliavin sur l'espace de Poisson
JO - Séminaire de probabilités de Strasbourg
PY - 1987
PB - Springer - Lecture Notes in Mathematics
VL - 21
SP - 100
EP - 113
LA - fre
KW - symmetric diffusion semigroup; Malliavin operator; Malliavin calculus of variations for processes with jumps
UR - http://eudml.org/doc/113585
ER -

References

top
  1. [1] K. Bichteler, J.B. Gravereaux, J. Jacod : Malliavin Calculus for processes with jumps. A paraître Zbl0706.60057
  2. [2] J.M. Bismut : Calcul des variations stochastique et processus de sauts. Z. für. Wahr.56, 469-505, 1981. Zbl0445.60049MR647682
  3. [3] K. Itô : Spectral type of shifts transformations of differential process with stationary increments. Trans. Amer. Math. Soc.81 (1956), p. Zbl0073.35303MR77017
  4. [4] P.A. Meyer : Elements de probabilités quantiques. Exposés I à V, Sém. de Proba. XX, Lecture Notes in Math.1204, Springer1986. Zbl0604.60001MR942022
  5. [5] E. Nelson : The free Markoff field. J. Funct. Anal.1 Zbl0273.60079MR343816
  6. [6] J. Neveu : Processus Ponctuels. Ecole d'Eté de Saint-Flour VI-1976, Lecture Notes in Math.598, Springer1977. Zbl0439.60044MR474493
  7. [7] J. RUIZ de CHAVEZ : Espaces de Fock pour les processus de Wiener et de Poisson. Sém. de Proba. XIX, Lecture Notes in Math.1123, Springer1983/1984. Zbl0563.60040MR889481
  8. [8] B. Simon : The P(φ)2 Euclidean Quantum Field Theory. Princeton University Press (1974). Zbl1175.81146MR489552
  9. [9] D. Stroock : The Malliavin Calculus, a Functional Analytic Approch. J. Funct. Anal.44, 1981, p. 212-258. Zbl0475.60060MR642917
  10. [10] D. Surgaïlis : On multiple Poisson stochastic integrals and associated Markov semi-groups. Probability and Math. Stat.3, 1984, 217-239. Zbl0548.60058MR764148
  11. [11] D. Surgaïlis : On Poisson Multiple stochastic integrals and associated equilibrium Markov processes. In : Theory and Appl. of Random Fields, Lect. Notes in Control and Inform. Sci.49, 1983, 233-248 (Bangalore). Zbl0511.60047MR799947
  12. [12] P.A. Meyer : Processus de Markov. Lecture Notes in Math.26, Springer1967. Zbl0189.51403MR219136

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.