C-semigroups on Banach spaces and functional inequalities

Shiqi Song

Séminaire de probabilités de Strasbourg (1995)

  • Volume: 29, page 297-326

How to cite

top

Song, Shiqi. "C-semigroups on Banach spaces and functional inequalities." Séminaire de probabilités de Strasbourg 29 (1995): 297-326. <http://eudml.org/doc/113913>.

@article{Song1995,
author = {Song, Shiqi},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {-semigroup; diffusion process; Brownian motion; Poincaré’s inequality; logarithmic Sobolev inequality; Stein-Meyer-Bakry inequalities; Dirichlet forms},
language = {fre},
pages = {297-326},
publisher = {Springer - Lecture Notes in Mathematics},
title = {C-semigroups on Banach spaces and functional inequalities},
url = {http://eudml.org/doc/113913},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Song, Shiqi
TI - C-semigroups on Banach spaces and functional inequalities
JO - Séminaire de probabilités de Strasbourg
PY - 1995
PB - Springer - Lecture Notes in Mathematics
VL - 29
SP - 297
EP - 326
LA - fre
KW - -semigroup; diffusion process; Brownian motion; Poincaré’s inequality; logarithmic Sobolev inequality; Stein-Meyer-Bakry inequalities; Dirichlet forms
UR - http://eudml.org/doc/113913
ER -

References

top
  1. [1] Albeverio ( S.), Röckner ( M.): Classical Dirichlet forms on topological vector spaces - closability and a Caméron-Martin formula, J.F.A.88, p.395-436, 1990. Zbl0737.46036MR1038449
  2. [2] Bakry ( D.), Emery ( M.): Diffusions hypercontractives, Sém. Prob. XIX, LN1123, p.179-206, Springer, 1985. Zbl0561.60080MR889476
  3. [3] Bakry ( D.): Etude probabiliste des transformation de Riesz dans les variétés à courbure de Ricci minorée, Sém. Prob. XXI, LN1247, p.137-171, Springer, 1987. Zbl0629.58018MR941980
  4. [4] Bakry ( D.): Transformations de Riesz pour les semi-groupes symétriques, Sém. Prob. XIX, LN1123, p.131-174, Springer, 1985. Zbl0561.42010
  5. [5] Banuelos ( R.): Martingale transforms and related singular integrals, Trans. Amer. Math. Soc. Vol.293, N°2, p.547-563, 1986. Zbl0591.60045MR816309
  6. [6] Davies ( E.): Heat kernels and spectral theory, Cambridge University Press, 1989. Zbl0699.35006MR990239
  7. [7] Dellacherie ( C.), Maisonneuve ( B.), Meyer ( P.A.): Probabilités et Potentiel, Ch.XVII à XXIV, Hermann, 1992. 
  8. [8] Feyel ( D.), de La Pradelle ( A.): Capacités gaussiennes, Ann. Inst. Fourier, Grenoble41, 1, p.49-76, 1991. Zbl0735.46018MR1112191
  9. [9] Fukushima ( M.): Dirichlet forms and Markov processes, North-Holland/Kodansha, 1980. Zbl0422.31007MR569058
  10. [10] Gundy ( R.F.), Silverstein ( M.L.): On a probabilistic interpretation for the Riesz transforms, Functional Analysis in Markov Processes, LN923, p.199-203,1982. Zbl0495.60053MR661625
  11. [11] Gundy ( R.F.), Varopoulos ( N.T.): Les transformations de Riesz et les intégrales stochastiques, CRAS289, p.13-16, 1979. Zbl0413.60003MR545671
  12. [12] Gundy ( R.F.): Sur les transformation de Riesz pour le semi-groupe d'Omstein-Uhlenbeck, CRAS303, 1986. Zbl0606.60063MR877182
  13. [13] Hirsch ( F.), Song ( S.): Inequalities for Bochner's subordinates of two-parameter symmetric Markov processes, To appear in Ann. I.H.P.. Zbl0886.31006MR1411273
  14. [14] Hirsch ( F.), Song ( S.): Markov properties of multiparameter processes and capacities, To appear in Probab. Th. Rel. Fields. Zbl0833.60075MR1347170
  15. [15] Ikeda ( N.), Watanabe ( S.): Stochastic Differential Equations and diffusion processes, North-Holland/Kodansha, 1981. Zbl0495.60005MR637061
  16. [16] Jeulin ( T.): Semimartingales et grossissements de filtrations, LN833, Springer, 1980. Zbl0444.60002MR604176
  17. [17] Lenglart ( E.), Lépingle ( D.), Pratelli ( M.): Présentation unifiée de certaines inégalités de la théorie des martingales, Sém. Prob. XIV, LN784, p.26-48, Springer, 1980. Zbl0427.60042MR580107
  18. [ 18] Lohoué ( N.): Comparaison des champs de vecteurs et des puissances du Laplacien sur une variété riemannienne à courbure non positive, J.F.A.61, p. 164-201, 1985. Zbl0605.58051MR786621
  19. [19] Ma ( Z.), Röckner ( M.): Introduction to the theory of (non symmetric) Dirichlet forms, Berlin - Heidelberg, Springer - Verlag, 1992. Zbl0826.31001
  20. [20] Mao ( X.): Exponential stability of stochastic differential equations, Pure and Applied Mathematics, Marcel Dekker, 1994. Zbl0806.60044MR1275834
  21. [21] Meyer ( P.A.): Démonstration probabiliste de certaines inégalités de Littlewood-Paley, Sém. Prob. X, LN511, p.125-183, Springer1976. Zbl0332.60032MR501379
  22. [22] Meyer ( P.A.): Note sur les processes d'Ornstein-Uhlenbeck, Sém. Prob. XVI, LN920, p.95-132, Springer, 1982. Zbl0481.60041MR658673
  23. [23] Meyer ( P.A.): Retour sur la théorie de Littlewood-Paley, Sém. Prob. XV, LN850, p.151-166, Springer, 1981. Zbl0485.60070MR622560
  24. [24] Meyer ( P.A.): Transformations de Riesz pour les lois gaussiennes, Sém. Prob. XVIII, LN1059, p.179-193,1983. Zbl0543.60078MR770960
  25. [25] Pisier ( G.): Riesz transforms: a simpler analytic proof of P.A. Meyer's inequality, Sém. Prob. XXII, LN1321, p.485-501, Springer, 1988. Zbl0645.60061MR960544
  26. [26] Revuz ( D.), Yor ( M.): Continuous martingales and Brownian motion, Springer-Verlag, 1991. Zbl0731.60002MR1083357
  27. [27] Rothaus ( O.S.): Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities, J.F.A.42, p.102-120, 1981. Zbl0471.58027MR620581
  28. [28] Song ( S.): A study on Markovian maximality, change of probability and regularity, Potential Analysis, 3(4): 391-422,1994. Zbl0813.60070MR1302418
  29. [29] Song ( S.): Admissible vectors and their associated Dirichlet forms, Potential Analysis1, p.319-336, 1992. Zbl0766.31009MR1245888
  30. [30] Song ( S.): C-semigroups and Markovian uniqueness, preprint, 1994. 
  31. [31] Song ( S.): Construction d'un processus à deux paramètres à partir d'un semi-group à un paramètre, in Classical and Modem Potential Theory and Applications, Gowrisankaran and al. eds., Kluwer Acad. Publ., p.419-451, 1994. Zbl0864.31005MR1321631
  32. [32] Stein ( E.M.): Topics in harmonic analysis related to the Littlewood-Paley theory, Princeton University Press, 1970. Zbl0193.10502MR252961
  33. [33] Strichartz ( R.): Analysis of the Laplacian on the complete Riemannian manifold, J.F.A.52, p.48-79, 1983. Zbl0515.58037MR705991
  34. [34] Takeda ( M.): The maximum Markovian self-adjoint extensions of generalized Schrödinger operators, J. Math. Soc. Japan, 44, p. 113-130, 1992. Zbl0819.47061MR1139661
  35. [35] Varopoulos ( N.T.): Aspects of probabilistic Littlewood-Paley theory, J.F.A.38, p.25-60, 1980. Zbl0462.60050MR583240
  36. [36] Wu ( L.M.): Construction de l'opérateur de Malliavin sur l'espace de Poisson, Sém. Prob. XXI, LN1247, p.100-113, Springer, 1987. Zbl0659.60079MR941978
  37. [37] Wu ( L.M.): Inégalité de Sobolev sur l'espace de Poisson, Sém. Prob. XXI, LN1247, p.114-136, Springer, 1987. Zbl0635.60051MR941979

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.