Multiple points of Markov processes in a complete metric space

L.C.G. Rogers

Séminaire de probabilités de Strasbourg (1989)

  • Volume: 23, page 186-197

How to cite

top

Rogers, L.C.G.. "Multiple points of Markov processes in a complete metric space." Séminaire de probabilités de Strasbourg 23 (1989): 186-197. <http://eudml.org/doc/113672>.

@article{Rogers1989,
author = {Rogers, L.C.G.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {multiple point; Green's functions; strong Markov process},
language = {fre},
pages = {186-197},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Multiple points of Markov processes in a complete metric space},
url = {http://eudml.org/doc/113672},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Rogers, L.C.G.
TI - Multiple points of Markov processes in a complete metric space
JO - Séminaire de probabilités de Strasbourg
PY - 1989
PB - Springer - Lecture Notes in Mathematics
VL - 23
SP - 186
EP - 197
LA - fre
KW - multiple point; Green's functions; strong Markov process
UR - http://eudml.org/doc/113672
ER -

References

top
  1. [1] Dynkin, E.B.. Multiple path integrals. Adv. Appl. Math.7,205-219,1986. Zbl0604.60075MR845377
  2. [2] Evans, S.N.Potential theory for a family of several Markov processes. Ann. Inst. Henri Poincaré23, 499-530, 1987. Zbl0625.60086MR906728
  3. [3] Evans, S.N.Multiple points in the sample paths of a Lévy process. Preprint, 1987. MR912660
  4. [4] Geman, D., Horowitz, J., and Rosen, J.. A local time analysis of intersections of Brownian paths in the plane. Ann. Prob.12, 86-107, 1984. Zbl0536.60046MR723731
  5. [5] Hawkes, J.Potential theory of Lévy processes. Proc. London Math. Soc.38, 335-352,1979. Zbl0401.60069MR531166
  6. [6] LeGall, J.-F., Rosen, J. and Shieh, N.R.Multiple points of Lévy processes. Preprint, 1987. 
  7. [7] Rogers, L.C.G.and Williams, D.Diffusions, Markov Processes, and Martingales, Vol.2. Wiley, Chichester, 1987. Zbl0627.60001MR921238
  8. [8] Rosen, J.A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Physics88, 327-338, 1983. Zbl0534.60070MR701921
  9. [9] Rosen, J.Joint continuity of the intersection local times of Markov processes. Ann. Prob.15, 659-675, 1987. Zbl0622.60084MR885136

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.