Potential theory for a family of several Markov processes

Steven N. Evans

Annales de l'I.H.P. Probabilités et statistiques (1987)

  • Volume: 23, Issue: 3, page 499-530
  • ISSN: 0246-0203

How to cite

top

Evans, Steven N.. "Potential theory for a family of several Markov processes." Annales de l'I.H.P. Probabilités et statistiques 23.3 (1987): 499-530. <http://eudml.org/doc/77302>.

@article{Evans1987,
author = {Evans, Steven N.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {potential theory for multiparameter processes; optional random measures; multiple points for Lévy processes},
language = {eng},
number = {3},
pages = {499-530},
publisher = {Gauthier-Villars},
title = {Potential theory for a family of several Markov processes},
url = {http://eudml.org/doc/77302},
volume = {23},
year = {1987},
}

TY - JOUR
AU - Evans, Steven N.
TI - Potential theory for a family of several Markov processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1987
PB - Gauthier-Villars
VL - 23
IS - 3
SP - 499
EP - 530
LA - eng
KW - potential theory for multiparameter processes; optional random measures; multiple points for Lévy processes
UR - http://eudml.org/doc/77302
ER -

References

top
  1. [1] D. Bakry, Sur la régularité des trajectoires des martingales à deux indices, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 50, 1979, pp. 149-157. Zbl0419.60051MR551608
  2. [2] D. Bakry, Théorèmes de section et de projection pour les processus à deux indices, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 55, 1981, pp. 55-71. Zbl0431.60057MR606006
  3. [3] R.M. Blumenthal et R.K. Getoor, Markov Processes and Potential Theory. Academic Press, New York, 1968. Zbl0169.49204MR264757
  4. [4] R. Cairoli, Enveloppe de Snell d'un processus à paramètre bidimensionnel. Ann. Inst. Henri Poincaré B, Vol. 18, 1982, pp. 47-53. Zbl0482.60041MR646840
  5. [5] C. Dellacherie et P.A. Meyer, Probabilities and Potential. North-Holland, Amsterdam, 1978. Zbl0494.60001MR521810
  6. [6] E.B. Dynkin, Additive Functionals of Several Time-Reversible Markov Processes. J. Funct. Anal., Vol. 42, 1981, pp. 64-101. Zbl0467.60069MR620580
  7. [7] E.B. Dynkin, Harmonic Functions Associated with Several Markov Processes. Adv. in Appl. Math., Vol. 2, 1981, pp. 260-283. Zbl0479.60057MR626862
  8. [8] E.B. Dynkin, Green's and Dirichlet Spaces Assiciated with Fine Markov Processes. J. Funct. Anal., Vol. 47, 1982, pp. 381-418. Zbl0488.60083MR665023
  9. [9] E.B. Dynkin, Green's and Dirichlet Spaces for a Symmetric Markov Transition Function. In Probability, Statistics and Analysis, LondonMathematical Society, Lecture Note Series, No. 79, Cambridge University PressCambridge, 1983. Zbl0501.60081MR696022
  10. [10] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Second Edition, John Wiley and Sons, New York, 1971. Zbl0138.10207MR270403
  11. [11] M. Fukushima, Dirichlet Forms and Markov Processes. North-Holland, Amsterdam, 1980. Zbl0422.31007MR569058
  12. [12] D. Geman, J. Horowitz et J. Rosen, A Local Time Analysis of the Intersections of Brownian Paths in the Plane, Ann. Probab., Vol. 12, 1984, pp. 86-107. Zbl0536.60046MR723731
  13. [13] J. Hawkes, Multiple Points for Symmetric Lévy Processes, Math. Proc. Camb. Phil. Soc., Vol. 83, pp. 83-90, 1978. Zbl0396.60067MR464385
  14. [14] J. Hawkes, Potential Theory of Lévy Processes, Proc. London Math. Soc., (3), Vol. 38, 1979, pp. 335-352. Zbl0401.60069MR531166
  15. [15] J. Hawkes, Some Geometric Aspects of Potential Theory. in Stochastic Analysis and Applications, Lecture Notes in Mathematics, No. 1095, Springer-Verlag, Berlin, 1984. Zbl0558.60055MR777518
  16. [16] J. Hawkes, Transition and Resolvent Densities for Lévy Processes. preprint. 
  17. [17] W.J. Hendricks, Multiple Points for Transient Symmetric LevyProcesses. Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 49, 1979, pp. 13-21. Zbl0398.60042MR539660
  18. [18] E. Merzbach et M. Zakai, Predictable and Dual Predictable Projections of Two-Parameter Stochastic Processes.Z. Wahrscheinlichkeitstheorie verw. Geblete, Vol. 53, 1980, pp. 263-269. Zbl0437.60040MR586018
  19. [19] A. Millet, On Convergence and Regularity of Two-Parameter (Δ1) Submartingales. Ann. Inst. Henri-Poincaré B, Vol. 19, 1983, pp. 25-42. Zbl0507.60028MR699976
  20. [20] S.C. Port et C.J. Stone, Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. Zbl0413.60067MR492329
  21. [21] N.R. Shieh, Multiple Points of a Lévy Process, preprint. 
  22. [22] N. TongringMultiple Points of Brownian Motion. In Conference in Modern Analysis and Probability, Contemporary Mathematics, Vol. 26. American Mathematical Society, Providence, 1984. Zbl0534.60071MR737416

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.