Potential theory for a family of several Markov processes
Annales de l'I.H.P. Probabilités et statistiques (1987)
- Volume: 23, Issue: 3, page 499-530
- ISSN: 0246-0203
Access Full Article
topHow to cite
topEvans, Steven N.. "Potential theory for a family of several Markov processes." Annales de l'I.H.P. Probabilités et statistiques 23.3 (1987): 499-530. <http://eudml.org/doc/77302>.
@article{Evans1987,
author = {Evans, Steven N.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {potential theory for multiparameter processes; optional random measures; multiple points for Lévy processes},
language = {eng},
number = {3},
pages = {499-530},
publisher = {Gauthier-Villars},
title = {Potential theory for a family of several Markov processes},
url = {http://eudml.org/doc/77302},
volume = {23},
year = {1987},
}
TY - JOUR
AU - Evans, Steven N.
TI - Potential theory for a family of several Markov processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1987
PB - Gauthier-Villars
VL - 23
IS - 3
SP - 499
EP - 530
LA - eng
KW - potential theory for multiparameter processes; optional random measures; multiple points for Lévy processes
UR - http://eudml.org/doc/77302
ER -
References
top- [1] D. Bakry, Sur la régularité des trajectoires des martingales à deux indices, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 50, 1979, pp. 149-157. Zbl0419.60051MR551608
- [2] D. Bakry, Théorèmes de section et de projection pour les processus à deux indices, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 55, 1981, pp. 55-71. Zbl0431.60057MR606006
- [3] R.M. Blumenthal et R.K. Getoor, Markov Processes and Potential Theory. Academic Press, New York, 1968. Zbl0169.49204MR264757
- [4] R. Cairoli, Enveloppe de Snell d'un processus à paramètre bidimensionnel. Ann. Inst. Henri Poincaré B, Vol. 18, 1982, pp. 47-53. Zbl0482.60041MR646840
- [5] C. Dellacherie et P.A. Meyer, Probabilities and Potential. North-Holland, Amsterdam, 1978. Zbl0494.60001MR521810
- [6] E.B. Dynkin, Additive Functionals of Several Time-Reversible Markov Processes. J. Funct. Anal., Vol. 42, 1981, pp. 64-101. Zbl0467.60069MR620580
- [7] E.B. Dynkin, Harmonic Functions Associated with Several Markov Processes. Adv. in Appl. Math., Vol. 2, 1981, pp. 260-283. Zbl0479.60057MR626862
- [8] E.B. Dynkin, Green's and Dirichlet Spaces Assiciated with Fine Markov Processes. J. Funct. Anal., Vol. 47, 1982, pp. 381-418. Zbl0488.60083MR665023
- [9] E.B. Dynkin, Green's and Dirichlet Spaces for a Symmetric Markov Transition Function. In Probability, Statistics and Analysis, LondonMathematical Society, Lecture Note Series, No. 79, Cambridge University PressCambridge, 1983. Zbl0501.60081MR696022
- [10] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Second Edition, John Wiley and Sons, New York, 1971. Zbl0138.10207MR270403
- [11] M. Fukushima, Dirichlet Forms and Markov Processes. North-Holland, Amsterdam, 1980. Zbl0422.31007MR569058
- [12] D. Geman, J. Horowitz et J. Rosen, A Local Time Analysis of the Intersections of Brownian Paths in the Plane, Ann. Probab., Vol. 12, 1984, pp. 86-107. Zbl0536.60046MR723731
- [13] J. Hawkes, Multiple Points for Symmetric Lévy Processes, Math. Proc. Camb. Phil. Soc., Vol. 83, pp. 83-90, 1978. Zbl0396.60067MR464385
- [14] J. Hawkes, Potential Theory of Lévy Processes, Proc. London Math. Soc., (3), Vol. 38, 1979, pp. 335-352. Zbl0401.60069MR531166
- [15] J. Hawkes, Some Geometric Aspects of Potential Theory. in Stochastic Analysis and Applications, Lecture Notes in Mathematics, No. 1095, Springer-Verlag, Berlin, 1984. Zbl0558.60055MR777518
- [16] J. Hawkes, Transition and Resolvent Densities for Lévy Processes. preprint.
- [17] W.J. Hendricks, Multiple Points for Transient Symmetric LevyProcesses. Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 49, 1979, pp. 13-21. Zbl0398.60042MR539660
- [18] E. Merzbach et M. Zakai, Predictable and Dual Predictable Projections of Two-Parameter Stochastic Processes.Z. Wahrscheinlichkeitstheorie verw. Geblete, Vol. 53, 1980, pp. 263-269. Zbl0437.60040MR586018
- [19] A. Millet, On Convergence and Regularity of Two-Parameter (Δ1) Submartingales. Ann. Inst. Henri-Poincaré B, Vol. 19, 1983, pp. 25-42. Zbl0507.60028MR699976
- [20] S.C. Port et C.J. Stone, Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. Zbl0413.60067MR492329
- [21] N.R. Shieh, Multiple Points of a Lévy Process, preprint.
- [22] N. TongringMultiple Points of Brownian Motion. In Conference in Modern Analysis and Probability, Contemporary Mathematics, Vol. 26. American Mathematical Society, Providence, 1984. Zbl0534.60071MR737416
Citations in EuDML Documents
top- L.C.G. Rogers, Multiple points of Markov processes in a complete metric space
- Jean-François Le Gall, Temps locaux d'intersection et points multiples des processus de Lévy
- Philippe Biane, Comportement asymptotique de certaines fonctionnelles additives de plusieurs mouvements browniens
- Davar Khoshnevisan, Some polar sets for the brownian sheet
- P. J. Fitzsimmons, Thomas S. Salisbury, Capacity and energy for multiparameter Markov processes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.