Regularity and integrator properties of variation processes of two-parameter martingales with jumps

Peter Imkeller

Séminaire de probabilités de Strasbourg (1989)

  • Volume: 23, page 536-565

How to cite

top

Imkeller, Peter. "Regularity and integrator properties of variation processes of two-parameter martingales with jumps." Séminaire de probabilités de Strasbourg 23 (1989): 536-565. <http://eudml.org/doc/113702>.

@article{Imkeller1989,
author = {Imkeller, Peter},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Itô formula; stochastic integrator properties; continuity properties; stochastic calculus of two-parameter martingales},
language = {fre},
pages = {536-565},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Regularity and integrator properties of variation processes of two-parameter martingales with jumps},
url = {http://eudml.org/doc/113702},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Imkeller, Peter
TI - Regularity and integrator properties of variation processes of two-parameter martingales with jumps
JO - Séminaire de probabilités de Strasbourg
PY - 1989
PB - Springer - Lecture Notes in Mathematics
VL - 23
SP - 536
EP - 565
LA - fre
KW - Itô formula; stochastic integrator properties; continuity properties; stochastic calculus of two-parameter martingales
UR - http://eudml.org/doc/113702
ER -

References

top
  1. [1] Bakry, D. (1981) Semimartingales à deux indices. Séminaire de probabilités XVI. Lecture Notes in Math.920, 355-369. Springer, Berlin. Zbl0478.60053MR658697
  2. [2] Bichteler, K. (1981). Stochastic integration and Lp-theory of semi-martingales. Ann. Probability9, 49-89. Zbl0458.60057MR606798
  3. [3] Cairoli, R., Walsh, J.B. (1975). Stochastic integrals in the plane. Acta Math.134, 111-183. Zbl0334.60026MR420845
  4. [4] Dellacherie, C., Meyer, P.A. (1980). Probabilités et potentiel. Ch. V-VIII. Hermann, Paris. Zbl0464.60001MR566768
  5. [5] Hürzeler, H. (1982). Quasimartingale und stochastische Integratoren mit halbgeordneten Indexmengen. Dissertation, ETHZürich. Zbl0523.60042
  6. [6] Imkeller, P. (1987). A class of two-parameter stochastic integrators. Preprint, Univ. München. Zbl0716.60057MR1008229
  7. [7] Imkeller, P. (1988). Two-parameter martingales and their quadratic variation. Lecture Notes in Math.1308. Springer, Berlin. Zbl0656.60056MR947545
  8. [8] Imkeller. P. (1988). On inequalities for two-parameter martingales. Preprint, Univ. München. Zbl0656.60056MR947545
  9. [9] Merzbach, E. (1979). Processus stochastiques à indices partiellement ordonnés. Rapport interne 55. Ecole Polytechnique, Palaiseau. 
  10. [10] Mishura, Yu.S. (1984). On some properties of discontinuous two-parameter martingales. Theor. Probability and Math. Statist. 29, 87-100. MR727109
  11. [11] Mishura, Yu.S. (1985). A generalized Ito formula for two-parameter martingales . I. Theor. Probability and Math. Statist.30, 114-127. Zbl0587.60038MR800837
  12. [12] Nualart, D. (1984). On the quadratic variation of two-parameter continuous martingales. Ann. Probability12, 445-457. Zbl0538.60049MR735848
  13. [13] Nualart, D. (1984). Une formule d'Ito pour les martingales continues à deux indices et quelques applications. Ann. Inst. Henri Poincaré20, 251-275. Zbl0543.60062MR762858

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.