Un traitement unifié de la représentation des fonctionnelles de Wiener

Li-Ming Wu

Séminaire de probabilités de Strasbourg (1990)

  • Volume: 24, page 166-187

How to cite

top

Wu, Li-Ming. "Un traitement unifié de la représentation des fonctionnelles de Wiener." Séminaire de probabilités de Strasbourg 24 (1990): 166-187. <http://eudml.org/doc/113715>.

@article{Wu1990,
author = {Wu, Li-Ming},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Malliavin calculus; integral representation theorem of the Clark- Haussmann type; Brownian sheet},
language = {fre},
pages = {166-187},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Un traitement unifié de la représentation des fonctionnelles de Wiener},
url = {http://eudml.org/doc/113715},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Wu, Li-Ming
TI - Un traitement unifié de la représentation des fonctionnelles de Wiener
JO - Séminaire de probabilités de Strasbourg
PY - 1990
PB - Springer - Lecture Notes in Mathematics
VL - 24
SP - 166
EP - 187
LA - fre
KW - Malliavin calculus; integral representation theorem of the Clark- Haussmann type; Brownian sheet
UR - http://eudml.org/doc/113715
ER -

References

top
  1. [1] Bismut, J.H.: Martingales, the Malliavin Calculus and hypoellipticity under general Hörmander's conditions. Z. Wahrsch. Th.56, 469-505 (1981). Zbl0445.60049MR621660
  2. [2] Blum, J.: Clark-Haussmann formulas for the Wiener sheet. Diss. ETH No 8159. Zbl0705.60067
  3. [3] Cairali, R. et Walsh, J.B.: Stochastic integrals in the plane. Acta Math, 134, 111-183 (1975). Zbl0334.60026MR420845
  4. [4] Clark, J.M.C.: The representation of functionals of Brownian motion by stochastic integrals. Ann. Math. Statist.41, 1282-1295 (1971). Zbl0213.19402MR270448
  5. [5] Dermoune, A., Krée, P., Wu, L.M.: Calcul stochastique non-adapté sur l'espace de Poisson. Sém. Proba. XXII. Lect. Notes in Math.1321, Springer Verlag, Berlin (1988). MR960543
  6. [6] Gaveau, B. et Trauber, P.: L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel. J. Funct. Anal.46, 230-238 (1982). Zbl0488.60068MR660187
  7. [7] Haussmann, U.: Functionals of diffusion processes as stochastic integrals. SIAM J. Control and Opt.16, 252-269 (1978). Zbl0375.60070MR474497
  8. [8] Hitsuda, H. et Watanabe, S.: On stochastic integrals with respect to an infinite number of Brownian motions and its applications. In Proc. Int. Symp. on SDE, Kyoto1976, ed. Ito, Wiley, New York (1978). Zbl0405.60059MR536004
  9. [9] Ito, K.: Multiple Wiener integrals. J. Math. Soc. Japan3, 385-392 (1951). Zbl0044.12202
  10. [10] Krée, P.: La théorie des distributions en dimension quelconque (ou calcul chaotique) et l'intégration stochastique. Actes Coll. Analyse stochastique, Silivri (1986). Zbl0648.60063
  11. [11] Kunita, H.: On backward stochastic differential equations. Stochastics, 6, 293-313 (1982). Zbl0533.60073MR665405
  12. [12] Kuo, H.: Gaussian measures in Banach spaces. Lect. Notes in Math.463, Springer Verlag, Berlin (1975). Zbl0306.28010MR461643
  13. [13] Malliavin, P.: Calcul des variations, intégrales stochastiques et complexes de de Rham sur l'espace de Wiener. C.R.A.S.Paris299, série 1, 347-350 (1984). Zbl0568.60058MR761263
  14. [14] Meyer, P.A.: Eléments de probabilités quantiques I, II. Sém. Proba. XX, XXI. Lect. Notes in Math. (1986, 1987). Zbl0604.60001MR942022
  15. [15] Meyer, P.A. et Yan, J.A.: A propos des distributions sur l'espace de Wiener. Sém. Proba. XXI, Lect. Notes in Math.1247, Springer Verlag, Berlin (1987). Zbl0632.60035MR941973
  16. [16] Nualart, D.: Noncausal stochastic integrals and calculus. Preprint (1987). Zbl0644.60043MR953794
  17. [17] Nualart, D. et Zakai, M.: Generalized stochastic integrals and Malliavin Calculus. Proba. Th. Rel. Fields73, 255-280 (1986). Zbl0601.60053MR855226
  18. [18] Nualart, D. et Zakai, M.: Generalized multiple stochastic integrals and the representation of Wiener functionals. Preprint. Zbl0641.60062MR959117
  19. [19] Ocone, D.: Malliavin Calculus and stochastic integral representation of functionals of diffusion processes. Stochastics12, 161-185 (1984). Zbl0542.60055MR749372
  20. [20] Rozanov, Yu.A.: Markov Fields. Springer Verlag, Berlin (1982). Zbl0498.60057MR676644
  21. [21] Skorohod, A.V.: On a generalization of a stochastic integral. Theory Probab. Appl.XX, 219-233 (1975). Zbl0333.60060MR391258
  22. [22] Ustunel, A.S.: Representation of the distributions on Wiener space and stochastic calculus of variations. J. Funct. Anal.70, 126-139 (1987). Zbl0638.46031MR870758
  23. [23] Wong, E. et Zakai, M.: Martingales and stochastic integrals for processes with a multi-dimensional parameter. Z. Wahrsch. Th.29, 109-122 (1974). Zbl0282.60030MR370758
  24. [24] Wu, L.M.: Semigroupes markoviens sur l'espace de Wiener. Thèse de doctorat de l'Univ. Paris6 (1987). 
  25. [25] Yan. J.A.: Développement des distributions suivant les chaos de Wiener et applications à l'analyse stochastique. Sém. Proba. XXILect. Notes in Math.1247, Springer Verlag, Berlin (1987). Zbl0621.60048MR941974
  26. [26] Yoshida, K.: Functional analysis. Springer Verlag, Berlin (1966) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.