Poisson stochastic integration in Hilbert spaces

Nicolas Privault; Jiang-Lun Wu

Annales mathématiques Blaise Pascal (1999)

  • Volume: 6, Issue: 2, page 41-61
  • ISSN: 1259-1734

How to cite

top

Privault, Nicolas, and Wu, Jiang-Lun. "Poisson stochastic integration in Hilbert spaces." Annales mathématiques Blaise Pascal 6.2 (1999): 41-61. <http://eudml.org/doc/79213>.

@article{Privault1999,
author = {Privault, Nicolas, Wu, Jiang-Lun},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Poisson random measures; Anticipating stochastic integrals; Quantum spectral stochastic integrals; Fock space.},
language = {eng},
number = {2},
pages = {41-61},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Poisson stochastic integration in Hilbert spaces},
url = {http://eudml.org/doc/79213},
volume = {6},
year = {1999},
}

TY - JOUR
AU - Privault, Nicolas
AU - Wu, Jiang-Lun
TI - Poisson stochastic integration in Hilbert spaces
JO - Annales mathématiques Blaise Pascal
PY - 1999
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 6
IS - 2
SP - 41
EP - 61
LA - eng
KW - Poisson random measures; Anticipating stochastic integrals; Quantum spectral stochastic integrals; Fock space.
UR - http://eudml.org/doc/79213
ER -

References

top
  1. [1] L. Accardi and I. Pikovski. Non adapted stochastic calculus as third quantization. Random Operators and Stochastic Equations, 4(1):77-89, 1996. Zbl0849.60098
  2. [2] D. Applebaum. Spectral families of quantum stochastic integrals. Communications in Mathematical Physics, 170:607-628, 1995. Zbl0851.60068MR1337135
  3. [3] D. Applebaum and M. Brooks. Infinite series of quantum spectral stochastic integrals. Journal of Operator Theory, 36:295-316, 1996. Zbl0868.46046MR1432120
  4. [4] S. Attal. Classical and quantum stochastic calculus. In Quantum Probability Communications, volume X, pages 1-52. World Scientific, Singapore, 1998. MR1689473
  5. [5] V.P. Belavkin. A Quantum Nonadapted Ito Formula and Stochastic Analysis in Fock Scale. J. Funct. Anal., 102:414-447, 1991. Zbl0737.60042MR1140634
  6. [6] A. Dermoune, P. Krée, and L. Wu. Calcul stochastique non adapté par rapport à la mesure de Poisson. In Séminaire de Probabilités XXII, volume 1321 of Lecture Notes in Mathematics. Springer Verlag, 1988. Zbl0653.60045MR960543
  7. [7] A. Guichardet. Symmetric Hilbert spaces and related topics, volume 261 of Lecture Notes in Mathematics. Springer Verlag, 1970. Zbl0265.43008MR493402
  8. [8] P.R. Halmos. Introduction to the theory of Hilbert spaces and spectral multiplicity. 2nd ed.Chelsea Publishing Company, New York, 1957. Zbl0079.12404
  9. [9] Z.Y. Huang. Stochastic integrals on general topological measurable spaces. Zeitschrift für Wahrscheinlichkeitstheories verw. Gebiete, 66:25-40, 1984. Zbl0519.60054MR743083
  10. [10] R.L. Hudson and K.R. Parthasarathy. Quantum Itô's formula and stochastic evolutions. Communications in Mathematical Physics, 93:301-323, 1984. Zbl0546.60058MR745686
  11. [11] Y. Ito. Generalized Poisson functionals. Probab. Theory Related Fields, 77:1-28, 1988. Zbl0617.60035MR921816
  12. [12] V. Liebscher. On the isomorphism of Poisson space and Fock space. In Quantum Probability and Related Topics, volume IX, pages 295-300, Singapore, 1994. World Scientific. 
  13. [13] J.M. Lindsay. Quantum and non-causal stochastic calculus. Probab. Theory Related Fields, 97:65-80, 1993. Zbl0794.60052
  14. [14] J. Neveu. Processus ponctuels. In Ecole d'été de Probabilités de Saint-Flour VI, volume 598 of Lecture Notes in Mathematics, pages 249-445. Springer-Verlag, 1977. Zbl0439.60044MR474493
  15. [15] D. Nualart and J. Vives. A duality formula on the Poisson space and some applications. In E. Bolthausen, M. Dozzi, and F. Russo, Seminar on Stochastic Analysis, Random Fields and Applications, Progress in Probability, pages 205-213, Ascona, 1993. Birkäuser. Zbl0856.60057MR1360277
  16. [16] K.R. Parthasarathy. An Introduction to Quantum Stochastic Calculus. Birkäuser, 1992. Zbl0751.60046
  17. [17] J. Picard. Formules de dualité sur l'espace de Poisson. Ann. Inst. H. Poincaré Probab. Statist., 32(4):509-548, 1996. Zbl0859.60045MR1411270
  18. [18] D. Surgailis. On multiple Poisson stochastic integrals and associated Markov semi-groups. Probability and Mathematical Statistics, 3:217-239, 1984. Zbl0548.60058MR764148
  19. [19] A.S. Üstünel. Construction du calcul stochastique sur un espace de Wiener abstrait. C. R. Acad. Sci. Paris Sér. I Math., 305:279-282, 1987. Zbl0637.60068MR907962
  20. [20] A.S. Üstünel and M. Zakai. The construction of filtrations on abstract Wiener space. J. Funct. Anal., 143(1):10-32, 1997. Zbl0873.60039MR1428114
  21. [21] L. Wu. Un traitement unifié de la représentation des fonctionnelles de Wiener. In Séminaire de Probabilités, XXIV, 1988/89, volume 1426 of Lecture Notes in Mathematics, pages 166-187. Springer-Verlag, 1990. Zbl0723.60064MR1071539

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.