New sufficient conditions for the law of the iterated logarithm in Banach spaces
Séminaire de probabilités de Strasbourg (1991)
- Volume: 25, page 311-315
Access Full Article
topHow to cite
topWeber, Michel. "New sufficient conditions for the law of the iterated logarithm in Banach spaces." Séminaire de probabilités de Strasbourg 25 (1991): 311-315. <http://eudml.org/doc/113765>.
@article{Weber1991,
author = {Weber, Michel},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {law of the iterated logarithm; majorizing measures; Banach space},
language = {fre},
pages = {311-315},
publisher = {Springer - Lecture Notes in Mathematics},
title = {New sufficient conditions for the law of the iterated logarithm in Banach spaces},
url = {http://eudml.org/doc/113765},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Weber, Michel
TI - New sufficient conditions for the law of the iterated logarithm in Banach spaces
JO - Séminaire de probabilités de Strasbourg
PY - 1991
PB - Springer - Lecture Notes in Mathematics
VL - 25
SP - 311
EP - 315
LA - fre
KW - law of the iterated logarithm; majorizing measures; Banach space
UR - http://eudml.org/doc/113765
ER -
References
top- [1] Garsia, A., Rodemich, E., RUMSEY Jr. H., A real variable lemma and the continuity of paths of Gaussian processes, Indiana U. Math. J.V., 20, 565-578, (1970). Zbl0252.60020MR267632
- [2] Krasnoselski, M.A., Rutisky, J.B., Convex functions and Orlicz spaces, Dehli Pub. Hindustan Corp. (1962).
- [3] Ledoux, M., Talagrand, M., Characterization of the law of the iterated logarithm in Banach spaces, Ann. Prob.16, 1242-1264, (1988). Zbl0662.60008MR942766
- [4] Marcus, M., Pisier, G., Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Act. Math., 152, 245-301. Zbl0547.60047MR741056
- [5] Nanopoulos, C., Nobelis, P., Étude de la régularité des fonctions aléatoires et de leurs propriétés limites, Sem. de Prob.XII, Lect. Notee in Math.649, 567-690, (1977). Zbl0376.60041MR520031
- [6] Weber, M., The law of the iterated logarithm for subsequences in Banach spaces, Prob. in Banach spaces VII, Progress in Prob. 2.1, p. 269-288, Birkhaüser, (1990). Zbl0703.60002MR1105561
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.