New sufficient conditions for the law of the iterated logarithm in Banach spaces

Michel Weber

Séminaire de probabilités de Strasbourg (1991)

  • Volume: 25, page 311-315

How to cite

top

Weber, Michel. "New sufficient conditions for the law of the iterated logarithm in Banach spaces." Séminaire de probabilités de Strasbourg 25 (1991): 311-315. <http://eudml.org/doc/113765>.

@article{Weber1991,
author = {Weber, Michel},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {law of the iterated logarithm; majorizing measures; Banach space},
language = {fre},
pages = {311-315},
publisher = {Springer - Lecture Notes in Mathematics},
title = {New sufficient conditions for the law of the iterated logarithm in Banach spaces},
url = {http://eudml.org/doc/113765},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Weber, Michel
TI - New sufficient conditions for the law of the iterated logarithm in Banach spaces
JO - Séminaire de probabilités de Strasbourg
PY - 1991
PB - Springer - Lecture Notes in Mathematics
VL - 25
SP - 311
EP - 315
LA - fre
KW - law of the iterated logarithm; majorizing measures; Banach space
UR - http://eudml.org/doc/113765
ER -

References

top
  1. [1] Garsia, A., Rodemich, E., RUMSEY Jr. H., A real variable lemma and the continuity of paths of Gaussian processes, Indiana U. Math. J.V., 20, 565-578, (1970). Zbl0252.60020MR267632
  2. [2] Krasnoselski, M.A., Rutisky, J.B., Convex functions and Orlicz spaces, Dehli Pub. Hindustan Corp. (1962). 
  3. [3] Ledoux, M., Talagrand, M., Characterization of the law of the iterated logarithm in Banach spaces, Ann. Prob.16, 1242-1264, (1988). Zbl0662.60008MR942766
  4. [4] Marcus, M., Pisier, G., Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Act. Math., 152, 245-301. Zbl0547.60047MR741056
  5. [5] Nanopoulos, C., Nobelis, P., Étude de la régularité des fonctions aléatoires et de leurs propriétés limites, Sem. de Prob.XII, Lect. Notee in Math.649, 567-690, (1977). Zbl0376.60041MR520031
  6. [6] Weber, M., The law of the iterated logarithm for subsequences in Banach spaces, Prob. in Banach spaces VII, Progress in Prob. 2.1, p. 269-288, Birkhaüser, (1990). Zbl0703.60002MR1105561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.