Skew products, regular conditional probabilities and stochastic differential equations : a technical remark

John C. Taylor

Séminaire de probabilités de Strasbourg (1992)

  • Volume: 26, page 113-126

How to cite

top

Taylor, John C.. "Skew products, regular conditional probabilities and stochastic differential equations : a technical remark." Séminaire de probabilités de Strasbourg 26 (1992): 113-126. <http://eudml.org/doc/113787>.

@article{Taylor1992,
author = {Taylor, John C.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Malliavin's transfer principle; stochastic differential equations in Stratonovich form; skew product; strong solution for the Itô system},
language = {eng},
pages = {113-126},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Skew products, regular conditional probabilities and stochastic differential equations : a technical remark},
url = {http://eudml.org/doc/113787},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Taylor, John C.
TI - Skew products, regular conditional probabilities and stochastic differential equations : a technical remark
JO - Séminaire de probabilités de Strasbourg
PY - 1992
PB - Springer - Lecture Notes in Mathematics
VL - 26
SP - 113
EP - 126
LA - eng
KW - Malliavin's transfer principle; stochastic differential equations in Stratonovich form; skew product; strong solution for the Itô system
UR - http://eudml.org/doc/113787
ER -

References

top
  1. [1] M. Emery, Manifold-valued semimartingales and martingales, Springer Verlag, New York, Berlin, 1989. 
  2. [2] S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, Florida, 1984. Zbl0543.58001MR754767
  3. [3] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland/Kodansha, Amsterdam/Tokyo, 1981. Zbl0495.60005MR637061
  4. [4] M.P. Malliavin and P. Malliavin, Lecture Notes in Mathematics404 (Théorie du Potentiel et Analyse Harmonique), Springer-Verlag, Berlin, 1974. Zbl0282.00014
  5. [5] P. Malliavin, Géometrie différentielle stochastique, Seminaire de Mathématiques Supérieures64, Presses de l'Université de Montréal, Montréal, 1978. Zbl0393.60062MR540035
  6. [6] E.J. Pauwels and L.C.G. Rogers, Skew-product decompositions of Brownian motions, Contemporary Mathematics "Geometry of random motion" 73 (1988), 237-262. Zbl0656.58034MR954643
  7. [7] C. Stricker et M. Yor, Calcul stochastique dépendant d'un paramètre, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete45 (1978), 109-133. Zbl0388.60056MR510530
  8. [8] F. Trèves, Topological vector spaces, distributions, and kernels, Academic Press, New York, 1967. Zbl0171.10402MR225131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.