Estimates for the Poisson kernels and their derivatives on rank one NA groups

Ewa Damek; Andrzej Hulanicki; Jacek Zienkiewicz

Studia Mathematica (1997)

  • Volume: 126, Issue: 2, page 115-148
  • ISSN: 0039-3223

Abstract

top
For rank one solvable Lie groups of the type NA estimates for the Poisson kernels and their derivatives are obtained. The results give estimates on the Poisson kernel and its derivatives in a natural parametrization of the Poisson boundary (minus one point) of a general homogeneous, simply connected manifold of negative curvature.

How to cite

top

Damek, Ewa, Hulanicki, Andrzej, and Zienkiewicz, Jacek. "Estimates for the Poisson kernels and their derivatives on rank one NA groups." Studia Mathematica 126.2 (1997): 115-148. <http://eudml.org/doc/216447>.

@article{Damek1997,
abstract = {For rank one solvable Lie groups of the type NA estimates for the Poisson kernels and their derivatives are obtained. The results give estimates on the Poisson kernel and its derivatives in a natural parametrization of the Poisson boundary (minus one point) of a general homogeneous, simply connected manifold of negative curvature.},
author = {Damek, Ewa, Hulanicki, Andrzej, Zienkiewicz, Jacek},
journal = {Studia Mathematica},
keywords = {solvable Lie groups; Poisson kernel; invariant differential operator; subelliptic operators},
language = {eng},
number = {2},
pages = {115-148},
title = {Estimates for the Poisson kernels and their derivatives on rank one NA groups},
url = {http://eudml.org/doc/216447},
volume = {126},
year = {1997},
}

TY - JOUR
AU - Damek, Ewa
AU - Hulanicki, Andrzej
AU - Zienkiewicz, Jacek
TI - Estimates for the Poisson kernels and their derivatives on rank one NA groups
JO - Studia Mathematica
PY - 1997
VL - 126
IS - 2
SP - 115
EP - 148
AB - For rank one solvable Lie groups of the type NA estimates for the Poisson kernels and their derivatives are obtained. The results give estimates on the Poisson kernel and its derivatives in a natural parametrization of the Poisson boundary (minus one point) of a general homogeneous, simply connected manifold of negative curvature.
LA - eng
KW - solvable Lie groups; Poisson kernel; invariant differential operator; subelliptic operators
UR - http://eudml.org/doc/216447
ER -

References

top
  1. [A] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987), 495-535. Zbl0652.31008
  2. [B] M. Babillot, Théorie de renouvellement pour des chaînes semi-markoviennes transientes, Ann. Inst. H. Poincaré 24 (1988), 507-569. Zbl0681.60095
  3. [BBE] M. Babillot, P. Bougerol and L. Elie, The random difference equation X n = A n X n - 1 + B n in the critical case, Ann. Probab. 25 (1997), 478-493. Zbl0873.60045
  4. [BR] L. Birgé et A. Raugi, Fonctions harmoniques sur les groupes moyennables, C. R. Acad. Sci. Paris 278 (1974), 1287-1289. Zbl0279.43006
  5. [D1] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-195. Zbl0675.22005
  6. [D2] E. Damek, Pointwise estimates for the Poisson kernel on NA groups by the Ancona method, Ann. Fac. Sci. Toulouse 5 (1996), 421-441. Zbl0876.22008
  7. [D3] E. Damek, Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms, Colloq. Math. 73 (1997), 229-249. Zbl0878.22007
  8. [DH1] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. Zbl0699.22012
  9. [DH2] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under the action of a solvable group, Studia Math. 101 (1991), 33-68. Zbl0811.43001
  10. [DH3] E. Damek and A. Hulanicki, Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups, Colloq. Math. 68 (1995), 121-140. Zbl0839.22008
  11. [DR] E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-249. Zbl0788.43008
  12. [Hei] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23-34. Zbl0273.53042
  13. [H] A. Hulanicki, Subalgebra of L 1 ( G ) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. Zbl0316.43005
  14. [M] P. Malliavin, Géometrie Différentielle Stochastique, Sém. Math. Sup. 64, Les Presses de l'Université de Montréal, Montréal, 1977. 
  15. [N] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. Zbl0091.10704
  16. [P] I. I. Pyatetskiĭ-Shapiro, Geometry and classification of homogeneous bounded domains in n , Uspekhi Mat. Nauk 20 (2) (1965), 3-51 (in Russian); English transl.: Russian Math. Surveys 20 (1966), 1-48. 
  17. [R] A. Raugi, Fonctions harmoniques sur les groupes localement compacts à base dénombrable, Bull. Soc. Math. France Mém. 54 (1977), 5-118. Zbl0389.60003
  18. [Ro] D. W. Robinson, Elliptic Operators and Lie Groups, Oxford Math. Monographs, Clarendon Press, 1991. 
  19. [So] J. Sołowiej, Fatou theorem - a negative result, Colloq. Math. 67 (1995), 131-145. Zbl0839.22009
  20. [S] D. Stroock, Lectures on Stochastic Analysis: Diffusion Theory, Cambridge Univ. Press, 1987. Zbl0605.60057
  21. [SV] D. Stroock and S. R. Varadhan, Multidimensional Diffusion Processes, Springer, 1979. Zbl0426.60069
  22. [T] J. C. Taylor, Skew products, regular conditional probabilities and stochastic differential equations: a technical remark, in: Séminaire de Probabilités XXVI, Lecture Notes in Math. 1526, Springer, 1992, 113-126. Zbl0763.60031
  23. [U] K. Urbanik, Functionals of transient stochastic processes with independent increments, Studia Math. 103 (1992), 299-314. Zbl0809.60068
  24. [V1] N. T. Varopoulos, Diffusion on Lie groups (I), Canad. J. Math. 46 (1994), 1073-1093. 
  25. [V2] N. T. Varopoulos, The heat kernel on Lie groups, Rev. Mat. Iberoamericana 12 (1996), 147-186. Zbl0853.22006
  26. [V3] N. T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, 1992. 
  27. [Vi] E. B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc. 12 (1963), 340-403. Zbl0138.43301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.