Large deviations for multiple Wiener-Itô integral processes
Eduardo Mayer-Wolf; David Nualart; Victor Pérez-Abreu
Séminaire de probabilités de Strasbourg (1992)
- Volume: 26, page 11-31
Access Full Article
topHow to cite
topMayer-Wolf, Eduardo, Nualart, David, and Pérez-Abreu, Victor. "Large deviations for multiple Wiener-Itô integral processes." Séminaire de probabilités de Strasbourg 26 (1992): 11-31. <http://eudml.org/doc/113788>.
@article{Mayer1992,
author = {Mayer-Wolf, Eduardo, Nualart, David, Pérez-Abreu, Victor},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Hu-Meyer formula; multiple Wiener-Itô integral; large deviation principle},
language = {eng},
pages = {11-31},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Large deviations for multiple Wiener-Itô integral processes},
url = {http://eudml.org/doc/113788},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Mayer-Wolf, Eduardo
AU - Nualart, David
AU - Pérez-Abreu, Victor
TI - Large deviations for multiple Wiener-Itô integral processes
JO - Séminaire de probabilités de Strasbourg
PY - 1992
PB - Springer - Lecture Notes in Mathematics
VL - 26
SP - 11
EP - 31
LA - eng
KW - Hu-Meyer formula; multiple Wiener-Itô integral; large deviation principle
UR - http://eudml.org/doc/113788
ER -
References
top- [1] R.C. Blei (1985): "Fractional dimensions and bounded fractional forms", Mem. Amer. Math. Soc.5, 331. Zbl0623.26015MR804208
- [2] C. Borell (1978): "Tail probabilities in Gauss space", in Vector space measures and applications, Dublin1977, (L.N. Math.644), pp. 73-82, SpringerBerlin-Heidelberg-New York. Zbl0397.60015MR502400
- [3] J.D. Deuschel and D.W. Stroock (1989): Large Deviations, Academic Press, New York. Zbl0705.60029MR997938
- [4] X. Fernique (1983): "Regularite de fonctions aleatoires non Gaussiennes", in Ecole d'Eté de Probabilités de Saint-Flour XI - 1981, (L.N. Math976), pp. 1-74, P.L. Hennequin, ed., SpringerBerlin-Heidelberg-New York. Zbl0507.60027MR722982
- [5] Y.Z. Hu and P.A. Meyer (1988): "Sur les intégrales multiples de Stratonovich" in Séminaire de Probabilités XXII (L.N. Math.1321), pp. 72-81, J. Azéma, P.A. Meyer and M. Yor, eds, SpringerBerlin-Heidelberg-New York. Zbl0644.60082MR960509
- [6] K. Itô (1951): "Multiple Wiener integrals", J. Math. Soc. Japan, 3, pp. 157-169. Zbl0044.12202MR44064
- [7] G.W. Johnson and G. Kallianpur (1989): "Some remarks on Hu and Meyer's paper and infinite dimensional calculus on finitely additive cannonical Hilbert space", Th. Pr. Appl. ,34, pp. 679-689. Zbl0766.60061MR1036713
- [8] M. Ledoux (1990): "A note on large deviations for Wiener chaos", in Séminaire de Probabilités XXIV (L.N. Math.1426), pp. 1-14, J. Azéma, P.A. Meyer and M. Yor, eds, SpringerBerlin-Heidelberg-New York. Zbl0701.60020MR1071528
- [9] H.P. McKean (1973): "Wiener's theory of nonlinear noise", in Stochastic Differential Equations, Proc. SIAM-AMS, 6, pp. 191-289. Zbl0273.60022MR356203
- [10] T. Mori and H. Oodaira (1986): "The law of the iterated logarithm for self-similar processes represented bu multiple Wiener integrals", Prob. Th. Rel. Fields, 71, pp. 367-391. Zbl0562.60033MR824710
- [11] T. Mori and H. Oodaira (1988): "Freidlin—Wentzell type estimates and the law of the iterated logarithm for a class of stochastic processes related to symmetric statistics", Yokohama Math. J., 36, pp. 123-130. Zbl0679.60037MR992615
- [12] D. Nualart and M. Zakai (1990): "Multiple Wiener—Itô integrals possessing a continuous extension", Prob. Th. Rel. Fields, 85, pp. 131-145. Zbl0685.60055MR1044305
- [13] A. Plikusas (1981): "Properties of the multiple Itô integral", Lithuanian Math. J., 21, pp. 184-191. Zbl0479.60060MR629070
- [14] L.C.G. Rogers and D. Williams (1987): Diffusions, Markov Processes, and Martingales, vol. 2, J. Wiley & Sons. Zbl0627.60001
- [15] M. Schilder (1966): "Some asymptotic formulae for Wiener integrals", Trans. Amer. Math. Soc., 125, pp. 63-85. Zbl0156.37602MR201892
- [16] S.R.S. Varadhan (1984): Large Deviations and ApplicationsCBMS series, SIAM, Philadelphia. Zbl0549.60023MR758258
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.