Large deviations for multiple Wiener-Itô integral processes

Eduardo Mayer-Wolf; David Nualart; Victor Pérez-Abreu

Séminaire de probabilités de Strasbourg (1992)

  • Volume: 26, page 11-31

How to cite

top

Mayer-Wolf, Eduardo, Nualart, David, and Pérez-Abreu, Victor. "Large deviations for multiple Wiener-Itô integral processes." Séminaire de probabilités de Strasbourg 26 (1992): 11-31. <http://eudml.org/doc/113788>.

@article{Mayer1992,
author = {Mayer-Wolf, Eduardo, Nualart, David, Pérez-Abreu, Victor},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Hu-Meyer formula; multiple Wiener-Itô integral; large deviation principle},
language = {eng},
pages = {11-31},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Large deviations for multiple Wiener-Itô integral processes},
url = {http://eudml.org/doc/113788},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Mayer-Wolf, Eduardo
AU - Nualart, David
AU - Pérez-Abreu, Victor
TI - Large deviations for multiple Wiener-Itô integral processes
JO - Séminaire de probabilités de Strasbourg
PY - 1992
PB - Springer - Lecture Notes in Mathematics
VL - 26
SP - 11
EP - 31
LA - eng
KW - Hu-Meyer formula; multiple Wiener-Itô integral; large deviation principle
UR - http://eudml.org/doc/113788
ER -

References

top
  1. [1] R.C. Blei (1985): "Fractional dimensions and bounded fractional forms", Mem. Amer. Math. Soc.5, 331. Zbl0623.26015MR804208
  2. [2] C. Borell (1978): "Tail probabilities in Gauss space", in Vector space measures and applications, Dublin1977, (L.N. Math.644), pp. 73-82, SpringerBerlin-Heidelberg-New York. Zbl0397.60015MR502400
  3. [3] J.D. Deuschel and D.W. Stroock (1989): Large Deviations, Academic Press, New York. Zbl0705.60029MR997938
  4. [4] X. Fernique (1983): "Regularite de fonctions aleatoires non Gaussiennes", in Ecole d'Eté de Probabilités de Saint-Flour XI - 1981, (L.N. Math976), pp. 1-74, P.L. Hennequin, ed., SpringerBerlin-Heidelberg-New York. Zbl0507.60027MR722982
  5. [5] Y.Z. Hu and P.A. Meyer (1988): "Sur les intégrales multiples de Stratonovich" in Séminaire de Probabilités XXII (L.N. Math.1321), pp. 72-81, J. Azéma, P.A. Meyer and M. Yor, eds, SpringerBerlin-Heidelberg-New York. Zbl0644.60082MR960509
  6. [6] K. Itô (1951): "Multiple Wiener integrals", J. Math. Soc. Japan, 3, pp. 157-169. Zbl0044.12202MR44064
  7. [7] G.W. Johnson and G. Kallianpur (1989): "Some remarks on Hu and Meyer's paper and infinite dimensional calculus on finitely additive cannonical Hilbert space", Th. Pr. Appl. ,34, pp. 679-689. Zbl0766.60061MR1036713
  8. [8] M. Ledoux (1990): "A note on large deviations for Wiener chaos", in Séminaire de Probabilités XXIV (L.N. Math.1426), pp. 1-14, J. Azéma, P.A. Meyer and M. Yor, eds, SpringerBerlin-Heidelberg-New York. Zbl0701.60020MR1071528
  9. [9] H.P. McKean (1973): "Wiener's theory of nonlinear noise", in Stochastic Differential Equations, Proc. SIAM-AMS, 6, pp. 191-289. Zbl0273.60022MR356203
  10. [10] T. Mori and H. Oodaira (1986): "The law of the iterated logarithm for self-similar processes represented bu multiple Wiener integrals", Prob. Th. Rel. Fields, 71, pp. 367-391. Zbl0562.60033MR824710
  11. [11] T. Mori and H. Oodaira (1988): "Freidlin—Wentzell type estimates and the law of the iterated logarithm for a class of stochastic processes related to symmetric statistics", Yokohama Math. J., 36, pp. 123-130. Zbl0679.60037MR992615
  12. [12] D. Nualart and M. Zakai (1990): "Multiple Wiener—Itô integrals possessing a continuous extension", Prob. Th. Rel. Fields, 85, pp. 131-145. Zbl0685.60055MR1044305
  13. [13] A. Plikusas (1981): "Properties of the multiple Itô integral", Lithuanian Math. J., 21, pp. 184-191. Zbl0479.60060MR629070
  14. [14] L.C.G. Rogers and D. Williams (1987): Diffusions, Markov Processes, and Martingales, vol. 2, J. Wiley & Sons. Zbl0627.60001
  15. [15] M. Schilder (1966): "Some asymptotic formulae for Wiener integrals", Trans. Amer. Math. Soc., 125, pp. 63-85. Zbl0156.37602MR201892
  16. [16] S.R.S. Varadhan (1984): Large Deviations and ApplicationsCBMS series, SIAM, Philadelphia. Zbl0549.60023MR758258

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.