Measures of finite (r,p)-energy and potentials on a separable metric space

Tetsuya Kazumi; Ichiro Shigekawa

Séminaire de probabilités de Strasbourg (1992)

  • Volume: 26, page 415-444

How to cite

top

Kazumi, Tetsuya, and Shigekawa, Ichiro. "Measures of finite (r,p)-energy and potentials on a separable metric space." Séminaire de probabilités de Strasbourg 26 (1992): 415-444. <http://eudml.org/doc/113812>.

@article{Kazumi1992,
author = {Kazumi, Tetsuya, Shigekawa, Ichiro},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Markovian semigroup; dual semigroup; tight measure; capacity of functions for Gaussian measures},
language = {eng},
pages = {415-444},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Measures of finite (r,p)-energy and potentials on a separable metric space},
url = {http://eudml.org/doc/113812},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Kazumi, Tetsuya
AU - Shigekawa, Ichiro
TI - Measures of finite (r,p)-energy and potentials on a separable metric space
JO - Séminaire de probabilités de Strasbourg
PY - 1992
PB - Springer - Lecture Notes in Mathematics
VL - 26
SP - 415
EP - 444
LA - eng
KW - Markovian semigroup; dual semigroup; tight measure; capacity of functions for Gaussian measures
UR - http://eudml.org/doc/113812
ER -

References

top
  1. [1] S. Albeverio and M. Röckner, Classical Dirichlet forms on topological vector spaces— the construction of the associated diffusion process, Probab. Th. Rel. Fields, 83 (1989), 405-434. Zbl0661.60094MR1017404
  2. [2] S. Albeverio, M. Fukushima, W. Hansen, Z.M. Ma and M. Röckner, An invariance result for capacities on Wiener space, preprint. MR1163462
  3. [3] N. Bourbaki, "Topologie générale," Chapitres 5 à 10, Hermann, Paris, 1974. Zbl0337.54001
  4. [4] E.B. Davies, "One-parameter semigroups , "Academic Press, London, 1980. Zbl0457.47030MR591851
  5. [5] N. Dunford and J.T. Schwartz, "Linear operators," Part I Interscience Publishers, New York. Zbl0084.10402MR117523
  6. [6] S.N. Ethier and T.G. Kurtz, "Markov processes," John Wiley & Sons, New York, 1986. Zbl0592.60049
  7. [7] D. Feyel and A. de La Pradelle, Espaces de Sobolev gaussiens, Ann. Inst. Fourier, Grenoble, 39 (1989), 875-908. Zbl0664.46028MR1036336
  8. [8] D. Feyel and A. de La Pradelle, Capacités gaussiennes, Ann. Inst. Fourier, Grenoble, 41 (1991), 49-76. Zbl0735.46018MR1112191
  9. [9] D. Feyel and A. de La Pradelle, Opérateurs linéaires gaussiens, preprint 
  10. [10] M. Fukushima, "Dirichlet forms and Markov Processes," North Holland/ Kodansha, Amsterdam/Tokyo, 1980. Zbl0422.31007MR569058
  11. [11] M. Fukushima and H. Kaneko, On (r,p)-capacities for general Markovian semigroups, in "Infinite dimensional analysis and stochastic processes, " ed. by S. Albeverio, Pitman, 1985. Zbl0573.60069MR865017
  12. [12] H. Kaneko, On (r,p)-capacities for Markov processes, Osaka J. Math., 23 (1986), 325-336. Zbl0633.60090MR856891
  13. [13] S. Kusuoka, Dirichlet forms and diffusion processes on Banach space, J. Fac. Science Univ. Tokyo, Sec. 1A29 (1982), 79-95. Zbl0496.60079MR657873
  14. [14] V.G. Maz'ya and V.P. Khavin, Non-linear potential theory, Russian Math. Surveys, 27 (1983), 71-148. Zbl0269.31004
  15. [15] L.H. Loomis, "An introduction to abstract harmonic analysis," D. Van Nostrand, Princeton, N. J., 1953. Zbl0052.11701MR54173
  16. [16] P.A. Meyer, "Probability and Potential , "Blaisdell Publishing Co., Waltham, Massachusetts, 1966 Zbl0138.10401MR205288
  17. [17] H.H. Schaefer, "Topological vector spaces," Springer, New York-Heidelberg-Berlin, 1971. Zbl0217.16002MR342978
  18. [18] B. Schmuland, An alternative compactification for classical Dirichlet forms on topological vector spaces, Stochastics, 33 (1990), 75-90. Zbl0726.31008MR1079933
  19. [19] I. Shigekawa, Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator, preprint. Zbl0777.60047MR1194112
  20. [20] E.M. Stein, "Topics in harmonic analysis related to Littlewood-Paley theory," Annals of Math. Study no. 63, Princeton, 1970. Zbl0193.10502MR252961
  21. [21] H. Sugita, Sobolev spaces of Wiener functionals and Malliavin's calculus, J. Math. Kyoto Univ., 25 (1985), 31-48. Zbl0581.46026MR777244
  22. [22] H. Sugita, Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka J. Math., 25 (1988), 665-696. Zbl0737.46038MR969026
  23. [23] M. Takeda, (r,p)-capacity on the Wiener space and properties of Brownian motion, Z. Wahr. verw. Gebiete, 68 (1984), 149-162. Zbl0573.60068MR767798

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.