Measures of finite (r,p)-energy and potentials on a separable metric space
Tetsuya Kazumi; Ichiro Shigekawa
Séminaire de probabilités de Strasbourg (1992)
- Volume: 26, page 415-444
Access Full Article
topHow to cite
topKazumi, Tetsuya, and Shigekawa, Ichiro. "Measures of finite (r,p)-energy and potentials on a separable metric space." Séminaire de probabilités de Strasbourg 26 (1992): 415-444. <http://eudml.org/doc/113812>.
@article{Kazumi1992,
author = {Kazumi, Tetsuya, Shigekawa, Ichiro},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Markovian semigroup; dual semigroup; tight measure; capacity of functions for Gaussian measures},
language = {eng},
pages = {415-444},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Measures of finite (r,p)-energy and potentials on a separable metric space},
url = {http://eudml.org/doc/113812},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Kazumi, Tetsuya
AU - Shigekawa, Ichiro
TI - Measures of finite (r,p)-energy and potentials on a separable metric space
JO - Séminaire de probabilités de Strasbourg
PY - 1992
PB - Springer - Lecture Notes in Mathematics
VL - 26
SP - 415
EP - 444
LA - eng
KW - Markovian semigroup; dual semigroup; tight measure; capacity of functions for Gaussian measures
UR - http://eudml.org/doc/113812
ER -
References
top- [1] S. Albeverio and M. Röckner, Classical Dirichlet forms on topological vector spaces— the construction of the associated diffusion process, Probab. Th. Rel. Fields, 83 (1989), 405-434. Zbl0661.60094MR1017404
- [2] S. Albeverio, M. Fukushima, W. Hansen, Z.M. Ma and M. Röckner, An invariance result for capacities on Wiener space, preprint. MR1163462
- [3] N. Bourbaki, "Topologie générale," Chapitres 5 à 10, Hermann, Paris, 1974. Zbl0337.54001
- [4] E.B. Davies, "One-parameter semigroups , "Academic Press, London, 1980. Zbl0457.47030MR591851
- [5] N. Dunford and J.T. Schwartz, "Linear operators," Part I Interscience Publishers, New York. Zbl0084.10402MR117523
- [6] S.N. Ethier and T.G. Kurtz, "Markov processes," John Wiley & Sons, New York, 1986. Zbl0592.60049
- [7] D. Feyel and A. de La Pradelle, Espaces de Sobolev gaussiens, Ann. Inst. Fourier, Grenoble, 39 (1989), 875-908. Zbl0664.46028MR1036336
- [8] D. Feyel and A. de La Pradelle, Capacités gaussiennes, Ann. Inst. Fourier, Grenoble, 41 (1991), 49-76. Zbl0735.46018MR1112191
- [9] D. Feyel and A. de La Pradelle, Opérateurs linéaires gaussiens, preprint
- [10] M. Fukushima, "Dirichlet forms and Markov Processes," North Holland/ Kodansha, Amsterdam/Tokyo, 1980. Zbl0422.31007MR569058
- [11] M. Fukushima and H. Kaneko, On (r,p)-capacities for general Markovian semigroups, in "Infinite dimensional analysis and stochastic processes, " ed. by S. Albeverio, Pitman, 1985. Zbl0573.60069MR865017
- [12] H. Kaneko, On (r,p)-capacities for Markov processes, Osaka J. Math., 23 (1986), 325-336. Zbl0633.60090MR856891
- [13] S. Kusuoka, Dirichlet forms and diffusion processes on Banach space, J. Fac. Science Univ. Tokyo, Sec. 1A29 (1982), 79-95. Zbl0496.60079MR657873
- [14] V.G. Maz'ya and V.P. Khavin, Non-linear potential theory, Russian Math. Surveys, 27 (1983), 71-148. Zbl0269.31004
- [15] L.H. Loomis, "An introduction to abstract harmonic analysis," D. Van Nostrand, Princeton, N. J., 1953. Zbl0052.11701MR54173
- [16] P.A. Meyer, "Probability and Potential , "Blaisdell Publishing Co., Waltham, Massachusetts, 1966 Zbl0138.10401MR205288
- [17] H.H. Schaefer, "Topological vector spaces," Springer, New York-Heidelberg-Berlin, 1971. Zbl0217.16002MR342978
- [18] B. Schmuland, An alternative compactification for classical Dirichlet forms on topological vector spaces, Stochastics, 33 (1990), 75-90. Zbl0726.31008MR1079933
- [19] I. Shigekawa, Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator, preprint. Zbl0777.60047MR1194112
- [20] E.M. Stein, "Topics in harmonic analysis related to Littlewood-Paley theory," Annals of Math. Study no. 63, Princeton, 1970. Zbl0193.10502MR252961
- [21] H. Sugita, Sobolev spaces of Wiener functionals and Malliavin's calculus, J. Math. Kyoto Univ., 25 (1985), 31-48. Zbl0581.46026MR777244
- [22] H. Sugita, Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka J. Math., 25 (1988), 665-696. Zbl0737.46038MR969026
- [23] M. Takeda, (r,p)-capacity on the Wiener space and properties of Brownian motion, Z. Wahr. verw. Gebiete, 68 (1984), 149-162. Zbl0573.60068MR767798
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.