Hitting a boundary point with reflected brownian motion
Krzysztof Burdzy; Donald Marshall
Séminaire de probabilités de Strasbourg (1992)
- Volume: 26, page 81-94
Access Full Article
topHow to cite
topReferences
top- 1. K. Burdzy, Multidimensional Brownian Excursions and Potential Theory, Longman, Harlow, Essex, 1987. Zbl0691.60066MR932248
- 2. , Geometric properties of 2-dimensional Brownian paths, Probab. Th. Rel. Fields81 (1989), 485-505. Zbl0667.60078MR995807
- 3. J.L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, New York, 1984. Zbl0549.31001MR731258
- 4. M. El Bachir, L'enveloppe convexe du mouvement brownien, Th. 3-ème cycle. Université ToulouseIII (1983).
- 5. J.-F. Le Gall, Mouvement brownien, cônes et processus stables, Probab. Th. Rel. Fields76 (1987), 587-627. Zbl0611.60076MR917681
- 6. L.C.G. Rogers, A guided tour through excursions, Bull. London Math. Soc.21 (1989), 305-341. Zbl0689.60075MR998631
- 7. , Brownian motion in a wedge with variable skew reflection, Trans. Amer. Math. Soc.326 (1991), 227-236. Zbl0748.60074MR1008701
- 8. ,Brownian motion in a wedge with variable skew reflection: II, Diffusion Processes and Related Problems in Analysis, Birkhäuser, Boston, 1990, pp. 95-115. Zbl0719.60081MR1110159
- 9. S.R.S. Varadhan and R.J. Williams, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math.38 (1985), 405-443. Zbl0579.60082MR792398
- 10. A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, 1979. Zbl0367.42001