Non-polar points for reflected brownian motion

Krzysztof Burdzy; Donald E. Marshall

Annales de l'I.H.P. Probabilités et statistiques (1993)

  • Volume: 29, Issue: 2, page 199-228
  • ISSN: 0246-0203

How to cite

top

Burdzy, Krzysztof, and Marshall, Donald E.. "Non-polar points for reflected brownian motion." Annales de l'I.H.P. Probabilités et statistiques 29.2 (1993): 199-228. <http://eudml.org/doc/77454>.

@article{Burdzy1993,
author = {Burdzy, Krzysztof, Marshall, Donald E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {reflected Brownian motion; Brownian paths; boundary point},
language = {eng},
number = {2},
pages = {199-228},
publisher = {Gauthier-Villars},
title = {Non-polar points for reflected brownian motion},
url = {http://eudml.org/doc/77454},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Burdzy, Krzysztof
AU - Marshall, Donald E.
TI - Non-polar points for reflected brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1993
PB - Gauthier-Villars
VL - 29
IS - 2
SP - 199
EP - 228
LA - eng
KW - reflected Brownian motion; Brownian paths; boundary point
UR - http://eudml.org/doc/77454
ER -

References

top
  1. [1] K. Burdzy, Multidimensional Brownian Excursions and Potential Theorey, Longman, Harlow, Essex, 1987. Zbl0691.60066MR932248
  2. [2] K. Burdzy, Geometric Properties of 2-Dimensional Brownian Paths, Probab. Th. Rel. Fields, Vol. 81, 1989, pp.485-505. Zbl0667.60078MR995807
  3. [3] K. Burdzy and D. Marshall, Hitting a Boundary Point with Reflected Brownian Motion, Séminaire de Probabilités, Vol. XXVI, Springer, New York, 1992 (to appear). Zbl0782.60051MR1231985
  4. [4] B.E.J. Dahlberg, Estimates of Harmonic Meausre, Arch. Rat. Mech., Vol. 65, 1977, pp. 275-288. Zbl0406.28009MR466593
  5. [5] B. Davis, On Brownian Slow Points, Z. Wahrsch. verw. Gebiete, Vol. 64, 1983, pp. 359- 367. Zbl0506.60078MR716492
  6. [6] J.L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1984. Zbl0549.31001MR731258
  7. [7] P.L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970. Zbl0215.20203MR268655
  8. [8] P.L. Duren, Univalent Functions, Springer, New York, 1983. Zbl0514.30001MR708494
  9. [9] M. El Bachir, L'enveloppe convexe du mouvement brownien, Thèse 3e cycle, Université Toulouse-III, 1983. 
  10. [10] W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, Wiley, New York, 1971. Zbl0138.10207MR270403
  11. [11] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024MR628971
  12. [12] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1988. Zbl0638.60065MR917065
  13. [13] S. Karlin and H.M. Taylor, A First Course in Stochastic Processes, 2nd ed., Academic Press, New York, 1975. Zbl0315.60016MR356197
  14. [14] J.-F. Le Gall, Mouvement brownien, cônes et processus stables, Probab. Th. Rel. Fields, Vol. 76, 1987, pp. 587-627. Zbl0611.60076MR917681
  15. [15] P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948. Zbl0034.22603MR190953
  16. [16] J.E. Mcmillan, Boundary Behaviour of a Conformal Mapping, Acta Math., Vol. 123, 1969, pp. 43-67. Zbl0222.30006MR257330
  17. [17] M. Motoo, Periodic Extensions of Two-Dimensional Brownian Motion on the Half Plane, I, Kodai Math. J., Vol. 12, 1989, pp. 132-209. Zbl0704.60079MR1002663
  18. [18] M. Motoo, Periodic Extensions of Two-Dimensional Brownian Motion on the Half Plane, II, Kodai Math. J., Vol. 13, 1990, pp. 417-483. Zbl0805.60080MR1078557
  19. [19] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975. Zbl0298.30014MR507768
  20. [20] D. Revuz, Mesures associées aux fonctionnelles additives de Markov. I, Trans. Amer. Math. Soc., Vol. 148, 1970, pp. 501-531. Zbl0266.60053MR279890
  21. [21] L.C.G. Rogers, A Guided Tour Through Excursions, Bull. London Math. Soc., Vol. 21, 1989, pp. 305-341. Zbl0689.60075MR998631
  22. [22] L.C.G. Rogers, Brownian Motion in a Wedge with Variable Skew Reflection, Trans. Amer. Math. Soc., Vol. 326, 1991, pp. 227-236. Zbl0748.60074MR1008701
  23. [23] L.C.G. Rogers, Brownian Motion in a Wedge with Variable Skew Reflection: II, Diffusion Processes and Related Problems in Analysis, Birkhäuser, Boston, 1990, pp. 95-115. Zbl0719.60081MR1110159
  24. [24] M. Sharpe, General Theory of Markov Processes, Academic Press, New York, 1988. Zbl0649.60079MR958914
  25. [25] T. Shiga and S. Watanabe, Bessel Diffusions as a One-Parameter Family of Diffusion Processes, Z. Wahrsch. verw. Geb., Vol. 27, 1973, pp. 37-46. Zbl0327.60047MR368192
  26. [26] A.V. Skorohod, Limit Theorems for Stochastic Processes, English transl. in Th. Probab. Appl., Vol. 1, 1960, pp. 261-290. 
  27. [27] A.V. Skorohod, Stochastic Equations for Diffusion Processes in a Bounded Region, Th. Probab. Appl., Vol. 6, 1961, pp. 264-274. Zbl0215.53501MR145598
  28. [28] S. Takanobou and S. Watanabe, On the Existence and Uniqueness of Diffusion Processes with Wentzell's Boundary Conditions, J. Math. Kyoto Univ., Vol. 28, 1988, pp. 71-80. Zbl0665.60062MR929208
  29. [29] M. Tsuchiya, On the Stochastic Differential Equation for a Brownian Motion with Oblique Reflection on the Half Plane, Proc. of Intern. Symp. S.D.E., Kyoto, 1976, pp. 427-436. Zbl0413.60053MR536023
  30. [30] M. Tsuchiya, On the Stochastic Differential Equation for a Two-Dimensional Brownian Motion with Boundary Condition, J. Math. Soc. Japan, Vol. 32, 1980, pp. 233-249. Zbl0444.60066MR567417
  31. [31] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. Zbl0087.28401MR114894
  32. [32] S.R.S. Varadhan and R.J. Williams, Brownian Motion in a Wedge with Oblique Reflection, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 405-443. Zbl0579.60082MR792398
  33. [33] D. Williams, Diffusions, Markov Processes and Martingales, Vol. I, Wiley, New York, 1979. Zbl0402.60003MR531031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.