Quasi-everywhere upper functions

Thomas S. Mountford

Séminaire de probabilités de Strasbourg (1992)

  • Volume: 26, page 95-106

How to cite


Mountford, Thomas S.. "Quasi-everywhere upper functions." Séminaire de probabilités de Strasbourg 26 (1992): 95-106. <http://eudml.org/doc/113836>.

author = {Mountford, Thomas S.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {capacitance of paths; large deviations; Ornstein-Uhlenbeck process on Wiener space},
language = {eng},
pages = {95-106},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Quasi-everywhere upper functions},
url = {http://eudml.org/doc/113836},
volume = {26},
year = {1992},

AU - Mountford, Thomas S.
TI - Quasi-everywhere upper functions
JO - Séminaire de probabilités de Strasbourg
PY - 1992
PB - Springer - Lecture Notes in Mathematics
VL - 26
SP - 95
EP - 106
LA - eng
KW - capacitance of paths; large deviations; Ornstein-Uhlenbeck process on Wiener space
UR - http://eudml.org/doc/113836
ER -


  1. Erdos, P. (1943): On the Law of the Iterated Logarithm. Annals of Mathematics43, 419-436. Zbl0063.01264MR6630
  2. Fukushima, M. (1980): Dirichelet Forms and Markov Processes. North-Holland, New York. Zbl0422.31007MR569058
  3. Fukushima, M. (1984): Basic Properties of Brownian Motion and a Capacity on Wiener SpaceJ. Math. Soc. Japan36, No. 1, 147-175. Zbl0522.60081MR723601
  4. Karatzas, I. and Shreve, S. (1988): Brownian motion and Stochastic CalculusSpringer-Verlag, New York. Zbl0638.60065MR917065
  5. Komatsu, T. and Takashima, K. (1984): On the Existence of Intersectional Local Time except on zero Capacity Set. Osaka J. Math.21, 913-929. Zbl0551.60084MR765364
  6. Meyer, P. (1980): Note sur les Processus d'Ornstein-Uhlenbeck. Seminaire de Probabilites XV1. Lecture Notes in Mathematics, 920Springer. Zbl0481.60041MR420878
  7. Penrose, M. (1989): On the Existence of Self-intersections for Quasi-everywhere Brownian Path in 3-space. Annals of Probability17, 2, 482-502. Zbl0714.60067MR985374
  8. Shigekawa, I. (1984): On the Quasi-everywhere Existence of the Local Time of 1-dimensional Brownian Motion. Osaka J. Math.21, 621-627. Zbl0551.60076MR759485
  9. Walsh, J. (1984): An Introduction to Stochastic Partial Differential Equations.Ecole d'Ete de Probabilites de Saint Flour XIV265-437. Springer. Zbl0608.60060MR876085

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.