Chaoticity on a stochastic interval [ 0 , T ]

Azzouz Dermoune

Séminaire de probabilités de Strasbourg (1995)

  • Volume: 29, page 117-124

How to cite

top

Dermoune, Azzouz. "Chaoticity on a stochastic interval $[0,T]$." Séminaire de probabilités de Strasbourg 29 (1995): 117-124. <http://eudml.org/doc/113893>.

@article{Dermoune1995,
author = {Dermoune, Azzouz},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {martingale; structure equation; chaotic representation property; chaotic martingale},
language = {eng},
pages = {117-124},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Chaoticity on a stochastic interval $[0,T]$},
url = {http://eudml.org/doc/113893},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Dermoune, Azzouz
TI - Chaoticity on a stochastic interval $[0,T]$
JO - Séminaire de probabilités de Strasbourg
PY - 1995
PB - Springer - Lecture Notes in Mathematics
VL - 29
SP - 117
EP - 124
LA - eng
KW - martingale; structure equation; chaotic representation property; chaotic martingale
UR - http://eudml.org/doc/113893
ER -

References

top
  1. [1] J. Azéma: Sur les fermés aléatoires. Séminaire de probabilités XIX, Lect. Notes in Maths.1123. Springer (1985). Zbl0563.60038MR889496
  2. [2] A. Dermoune: Distribution sur l'espace de Paul Lévy. Ann. Inst. Henri Poincaré, vol. 26, n° 1, 1990, p. 101-119. Zbl0699.60053MR1075441
  3. [3] M. Emery: On the Azéma martingales. Séminaire de probabilités XXIII, Lect. Notes in Maths, 1372, Springer (1989). Zbl0753.60045MR1022899
  4. [4] M. Emery: Quelques cas de représentation chaotique. Séminaire de probabilités XXV, Lect. Notes in Maths, 1485, Springer (1991). Zbl0754.60043MR1187765
  5. [5] S. He, J. Wang: The total continuity of natural filtrations and the strong property of predictable representations for jump processes and processes with independent increments, Séminaire de probabilités XVI, Vol. 920, (1981). Zbl0505.60055MR658696
  6. [6] K. Ito: Spectral type of the shift transformation of differential processes with increments. Tr. Ann. Math. Soc, Vol. 81, (1956). Zbl0073.35303MR77017
  7. [7] P.A. Meyer: Un cours sur les intégrales stochastiques, Séminaire de probabilités X, Vol. 511, p.p 321-331, (1976). Zbl0374.60070MR501332

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.