On the hypercontractivity of Ornstein-Uhlenbeck semigroups with drift
Séminaire de probabilités de Strasbourg (1995)
- Volume: 29, page 202-217
Access Full Article
topHow to cite
topQian, Zhongmin, and He, Sheng-Wu. "On the hypercontractivity of Ornstein-Uhlenbeck semigroups with drift." Séminaire de probabilités de Strasbourg 29 (1995): 202-217. <http://eudml.org/doc/113903>.
@article{Qian1995,
author = {Qian, Zhongmin, He, Sheng-Wu},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {hypercontractivity; Ornstein-Uhlenbeck semigroup; white noise analysis},
language = {fre},
pages = {202-217},
publisher = {Springer - Lecture Notes in Mathematics},
title = {On the hypercontractivity of Ornstein-Uhlenbeck semigroups with drift},
url = {http://eudml.org/doc/113903},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Qian, Zhongmin
AU - He, Sheng-Wu
TI - On the hypercontractivity of Ornstein-Uhlenbeck semigroups with drift
JO - Séminaire de probabilités de Strasbourg
PY - 1995
PB - Springer - Lecture Notes in Mathematics
VL - 29
SP - 202
EP - 217
LA - fre
KW - hypercontractivity; Ornstein-Uhlenbeck semigroup; white noise analysis
UR - http://eudml.org/doc/113903
ER -
References
top- [1] Bakry, D., Etude probabiliste des transformees de Riesz et de l'espace H1 sur les spheres, Sem. Prob. XVIII, Lecture Notes in Math.1059, 197-218, Springer, 1984. Zbl0571.60012MR770962
- [2] Bakry, D., L'hypercontractivite et son utilisation en theorie des semi-groupes, Preprint, 1993. MR1307413
- [3] Bakry, D. and Emery, M., Diffusions hypercontractives, Sem. Prob. XIX, Lecture Notes in Math.1123, 177-206, Springer, 1985. Zbl0561.60080MR889476
- [4] Bakry, D. and Emery, M., Propaganda for Γ2, in From Local Times to Global Geometry, Control and Physics, 39-46, K. D. Elworthy (ed.), Longman Sci. Tech., 1986. Zbl0608.58043MR894521
- [5] Bouleau, N. and Hirsh, F., Dirichlet Forms and Analysis on Wiener Space, Walter de Gruyter, 1991. Zbl0748.60046MR1133391
- [6] Davis, E.B., Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989. Zbl0699.35006MR990239
- [7] Dellacherie, C. and Meyer, P.A., Probabilites et Potentiel IV, Hermann, 1991. Zbl0323.60039MR488194
- [8] Fukushima, M., Dirichlet Forms and Markov Processes, North Holland, 1980. Zbl0422.31007MR569058
- [9] Gross, L., Logarithmic Sobolev inequalities, Amer. J. Math.97 (1975),1061-1083. Zbl0318.46049MR420249
- [10] He, S.W.and Wang, J.G., Gaussian measures on white noise space, Preprint, 1993. MR1459368
- [11] Hida, T., Kuo, H.H., Potthoff, J. and Streit, L., White Noise - An Infinite Dimensional Calculus, Kluwer Academic Publ., 1993. Zbl0771.60048MR1244577
- [12] Ma, Z. and Röckner, M., An Introduction to Non-symmetric Dirichlet Forms , Springer, 1992. Zbl0826.31001
- [13] Nelson, E., A quadratic interaction in two dimension, In Mathematical Theory of Elementary Particles, R. Goodman and I. Segal (eds.), M.I.T. Press, 1966. MR210416
- [14] Nelson, E., The free Markov field, J. Funct. Anal.12(1973), 211-227. Zbl0273.60079MR343816
- [15] Potthoff, J. and Streit, L., A characterization on Hida distribution, J. Funct. Anal.101(1991), 212-229. Zbl0826.46035MR1132316
- [16] Potthoff, J. and Yan, J.A., Some results about test and generalized functionals of white noise, In Proc. Singapore Prob. Conf., L.H.Y. Chen et al (eds.), Walter de Gruyter, 1992. Zbl0765.60030MR1188716
- [17] Qian, Z.M., On the Martin boundary of the Ornstein-Uhlenbeck operator on the white noise space, Preprint, 1993.
- [18] Röckner, M., On the parabolic Martin boundary of the Ornstein-Uhlenbeck operator on Wiener space, Ann. Prob. (1992), 1063-1085. Zbl0761.60067MR1159586
- [19] Rothaus, O., Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities, J. Funct. Anal.64(1985), 296-313. Zbl0578.46028MR812396
- [20] Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Academic Press, 1985. Zbl0401.47001MR751959
- [21] Simon, B., The P(φ)2 Euclidean (Quantum) Field Theory, Princeton Univ. Press, 1974. Zbl1175.81146MR489552
- [22] Yan J.A., Some recent developments in white noise analysis. In Probability and Statistics, A. Badrikian et al (eds.), World Scientific, 1993.
- [23] Yokoi, Y., Positive generalized functionals, Hiroshima Math. J.20(1990), 137-157. Zbl0714.60052MR1050432
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.