The gap between the past supremum and the future infimum of a transient Bessel process
Séminaire de probabilités de Strasbourg (1995)
- Volume: 29, page 220-230
Access Full Article
topHow to cite
topReferences
top- [A] D. Aldous (1992). Greedy search on the binary tree with random edge-weight. Comb., Prob. & Computing1, pp. 281-293 Zbl0803.68025
- [KLL] D. Khoshnevisan, T.M. Lewis and W.V. Li (1993). On the future infima of some transient processes. To appear in Prob. Theory and Rel. Fields Zbl0801.60066MR1283116
- [KS] S.B. Kochen and C.J. Stone (1964). A note on the Borel-Cantelli problem. Ill. J. Math.8, pp. 248-251 Zbl0139.35401MR161355
- [RY] D. Revuz and M. Yor (1991). Continuous Martingales and Brownian Motion. Springer Verlag. Grundlehren der mathematischen Wissenschaften #293. Berlin-Heidelberg Zbl0731.60002MR1083357
- [ST] Y. Saisho and H. Tanemura (1990). Pitman type theorem for one-dimensional diffusion processes. Tokyo J. Math. Vol.13, No.2, pp. 429-440 Zbl0722.60082MR1088242
- [Y] M. Yor (1993). Some Aspects of Brownian Motion. Part II: Some Recent martingale Problems. Forthcoming Lecture Notes Zbl0880.60082MR1442263