How long does it take a transient Bessel process to reach its future infimum?

Zhan Shi

Séminaire de probabilités de Strasbourg (1996)

  • Volume: 30, page 207-217

How to cite

top

Shi, Zhan. "How long does it take a transient Bessel process to reach its future infimum?." Séminaire de probabilités de Strasbourg 30 (1996): 207-217. <http://eudml.org/doc/113928>.

@article{Shi1996,
author = {Shi, Zhan},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {transient Bessel process; integral criterion; upper functions},
language = {fre},
pages = {207-217},
publisher = {Springer - Lecture Notes in Mathematics},
title = {How long does it take a transient Bessel process to reach its future infimum?},
url = {http://eudml.org/doc/113928},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Shi, Zhan
TI - How long does it take a transient Bessel process to reach its future infimum?
JO - Séminaire de probabilités de Strasbourg
PY - 1996
PB - Springer - Lecture Notes in Mathematics
VL - 30
SP - 207
EP - 217
LA - fre
KW - transient Bessel process; integral criterion; upper functions
UR - http://eudml.org/doc/113928
ER -

References

top
  1. [B] Bertoin, J. (1991). Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son minimum. Ann. Inst. H. Poincaré Probab. Statist. 27537-547. Zbl0758.60073MR1141246
  2. [C] Chaumont, L. (1994). Processus de Lévy et Conditionnement. Thèse de Doctorat de l'Université Paris VI. 
  3. [C-T] Ciesielski, Z. & Taylor, S.J. (1962). First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc.103434-450. Zbl0121.13003
  4. [Cs-F-R] Csáki, E., Földes, A. & Révész, P. (1987). On the maximum of a Wiener process and its location. Probab. Th. Rel. Fields76477-497. Zbl0611.60077
  5. [G-S] Gruet, J.-C. & Shi, Z. (1996). The occupation time of Brownian motion in a ball. J. Theoretical Probab.9429-445. Zbl0870.60072
  6. [I-K] Ismail, M.E.H. & Kelker, D.H. (1979). Special functions, Stieltjes transforms and infinite divisibility. SIAM J. Math. Anal.10884-901. Zbl0427.60021
  7. [Ke] Kent, J. (1978). Some probabilistic properties of Bessel functions. Ann. Probab.6760-770. Zbl0402.60080MR501378
  8. [Kh] Khoshnevisan, D. (1995). The gap between the past supremum and the future infimum of a transient Bessel process. Séminaire de Probabilités XXIX(Eds.: J. Azéma, M. Emery, P.-A. Meyer & M. Yor. Lecture Notes in Mathematics1613, pp. 220-230. Springer, Berlin. Zbl0836.60083
  9. [K-S] Kochen, S.B. & Stone, C.J. (1964). A note on the Borel-Cantelli lemma. Illinois J. Math.8248-251. Zbl0139.35401
  10. [M] Millar, P.W. (1977). Random times and decomposition theorems. In: "Probability": Proc. Symp. Pure Math. (Univ. Illinois, Urbana, 1976) 31 pp. 91-103. AMS, Providence, R.I. Zbl0389.60058MR443109
  11. [P] Pitman, J.W. (1975). One-dimensional Brownian motion and the three-dimen-sional Bessel process. Adv. Appl. Prob.7511-526. Zbl0332.60055MR375485
  12. [R-Y] Revuz, D. & Yor, M. (1994). Continuous Martingales and Brownian Motion. (2nd edition) Springer, Berlin. Zbl0804.60001
  13. [W1] Williams, D. (1970). Decomposing the Brownian path. Bull. Amer. Math. Soc.76871-873. Zbl0233.60066MR258130
  14. [W2] Williams, D. (1974). Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. (3) 28738-768. Zbl0326.60093MR350881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.