Meyer's topology and brownian motion in a composite medium

Wei-An Zheng

Séminaire de probabilités de Strasbourg (1996)

  • Volume: 30, page 108-116

How to cite


Zheng, Wei-An. "Meyer's topology and brownian motion in a composite medium." Séminaire de probabilités de Strasbourg 30 (1996): 108-116. <>.

author = {Zheng, Wei-An},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {thermal conductivity; Minkowski content; Stefan problem},
language = {eng},
pages = {108-116},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Meyer's topology and brownian motion in a composite medium},
url = {},
volume = {30},
year = {1996},

AU - Zheng, Wei-An
TI - Meyer's topology and brownian motion in a composite medium
JO - Séminaire de probabilités de Strasbourg
PY - 1996
PB - Springer - Lecture Notes in Mathematics
VL - 30
SP - 108
EP - 116
LA - eng
KW - thermal conductivity; Minkowski content; Stefan problem
UR -
ER -


  1. [1] M. Biroli and U. Mosco, "Dirichlet forms and structural estimates in discontinuous media,", C.R.Acad.Sci.Paris, t. 313, Sery I, (1991); Zbl0760.49004MR1133491
  2. [2] M. Biroli and U. Mosco, "Discontinuous media and Dirichlet forms of diffusion type", Developments in Partial Differential Equations and Applications to Math. Physics, Plenum Press, New York, (1992); Zbl0893.31008MR1213919
  3. [3] Z. Chen, "On reflecting diffusion processes and Skorohod decompositions", Prob. Theory and Related Fields, Vol.94, No.3, (1993), 281-315; Zbl0767.60074MR1198650
  4. [4] Z. Chen, P. Fitzsimmons and R. Williams, "Reflecting Brownian motions: quasimartingales and strong caccioppoli sets", Potential Analysis2 (1993), p.219-243; Zbl0812.60065MR1245240
  5. [5] C.M. Elliott and H.R. Ockendon, Weak and Variational Methods for Moving Boundary Problems, Pitman Publishing Inc. (1982); Zbl0476.35080MR650455
  6. [6] M. Fukushima, Dirichlet forms and Markov Processes, North-Holland, (1985); Zbl0422.31007MR569058
  7. [7] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, (1992); Zbl0804.28001MR1158660
  8. [8] T. Funaki, "A certain class of diffusion processes associated with nonlinear parabolic equations," Z.Wahrsch. verw. Gebiete, 67, (1984); Zbl0546.60081MR762085
  9. [9] J.M. Hill and J.N. Dewynne, Heat Conduction, Blackwell Scientific Publications, (1987); Zbl0656.35001MR938300
  10. [10] T.G. Kurtz, "Random time changes and convergence in distribution under the Meyer-Zheng conditions", the Annals of Prob., (1991), V19, No.3, 1010-1034; Zbl0742.60036MR1112405
  11. [11] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, AMS, (1968); 
  12. [12] A.V. Luikov, Analytical Heat Diffusion Theory, Academic Press, (1968); 
  13. [13] T. Lyons and T.S. Zhang, "Note on convergence of Dirichlet processes", Bull. London Math. Soc.25 (1993), 353-356; Zbl0793.31006MR1222728
  14. [14] T. Lyons and W. Zheng, "A Crossing estimate for the canonical process on a Dirichlet space and a tightness result" , Colloque Paul Levy sur les Processus Stochastiques, Asterisque157-158 (1988), 249-271; Zbl0654.60059MR976222
  15. [15] T. Lyons and W. Zheng, "Diffusion Processes with Non-smooth Diffusion Coefficients and Their Density Functions", the Proceedings of Edinburgh Mathematical Society, (1990), 231-242; Zbl0715.60096MR1069519
  16. [16] P.A. Meyer and W. Zheng, "Tightness criteria for laws of semimartingales," Ann. Inst. Henri Poincaré. 20 (1984), No. 4, 357-372; Zbl0551.60046MR771895
  17. [17] M.N., Özisik, Heat Conduction, 2nd ed., John Wiley & Sons, Inc. (1993); 
  18. [18] J. Nash, "Continuity of solutions of parabolic and elliptic equations", Amer. J. Math., (1958), 80, 931-954; Zbl0096.06902MR100158
  19. [19] M. Takeda, "Tightness property for symmetric diffusion processes"Proc. Japan Acad. Ser.A, Math. Sci. , (1988), 64; Zbl0667.60077MR952808
  20. [20] T. Uemura, "On weak convergence of diffusion processes generated by energy forms", Preprint, 1994; Zbl0852.60090MR1380730
  21. [21] R.J. Williams and W.A. Zheng, "On reflecting Brownian motion — a weak convergence approach, "A. Inst. H. Poincare, (1990), 26, No.3, p.461-488; Zbl0704.60081MR1066089
  22. [22] W. Zheng, "Tightness results for laws of diffusion processes application to stochastic machanics, "A. Inst. H. Poincare, (1985), 21; Zbl0579.60050MR798890
  23. [23] W. Zheng, "Conditional propagation of chaos and a class of quasi-linear PDE", Annals of Probobability, (1965), Vol.23, No.3, 1389-1413. Zbl0836.60053MR1349177

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.