Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie

Claude Kipnis; Ellen Saada

Séminaire de probabilités de Strasbourg (1996)

  • Volume: 30, page 55-67

How to cite

top

Kipnis, Claude, and Saada, Ellen. "Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie." Séminaire de probabilités de Strasbourg 30 (1996): 55-67. <http://eudml.org/doc/113943>.

@article{Kipnis1996,
author = {Kipnis, Claude, Saada, Ellen},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {retinotopy model; local interactions; linear system; particle systems; moments; limiting distribution},
language = {eng},
pages = {55-67},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie},
url = {http://eudml.org/doc/113943},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Kipnis, Claude
AU - Saada, Ellen
TI - Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie
JO - Séminaire de probabilités de Strasbourg
PY - 1996
PB - Springer - Lecture Notes in Mathematics
VL - 30
SP - 55
EP - 67
LA - eng
KW - retinotopy model; local interactions; linear system; particle systems; moments; limiting distribution
UR - http://eudml.org/doc/113943
ER -

References

top
  1. [1] Bouton, C. et G. Pages (1993). Self-organization and convergence of the one-dimensional Kohonen algorithm with non uniformly distributed stimuli. Stoch. Proc. and Appl., 47, 249-274. Zbl0779.60075MR1239840
  2. [2] Cocozza, C. et C. Kipnis (1977). Existence de processus Markoviens pour des systèmes infinis de particules. Ann. Inst. Henri Poincaré, sect. B, 13, 239-257. Zbl0384.60079MR488376
  3. [3] Cottrell, M. et J.C. Fort (1986). A stochastic model of retinotopy: a self-organizing process. Biol. Cybern., 53, 405-411. Zbl0605.92001MR839498
  4. [4] Cottrell, M. et J.C. Fort (1987). Etude d'un processus d'auto-organisation. Ann. Inst. Henri Poincaré, sect. B, 23, 1-20. Zbl0605.92002MR877382
  5. [5] Duflo, M. (1994). Algorithmes stochastiques. Poly. de DEA, univ. de Marne-la-Vallée. 
  6. [6] Durrett, R. (1991). Probability: Theory and examples. Wadsworth & Brooks /Cole. Zbl0709.60002
  7. [7] Durrett, R. (1993). Ten Lectures on Particle Systems. Notes du cours d'été de Saint-Flour. Zbl0840.60088
  8. [8] Feller, W. (1968). An introduction to probability theory and its applications, vol 1, 3rd edition. Wiley, New York. Zbl0155.23101MR228020
  9. [9] Fort, J.C.et G. Pages (1994). About the a.s. convergence of the Kohonen algorithm with a generalized neighbourhood function. Preprint. Zbl0781.60027MR1384371
  10. [10] Kohonen, T. (1982). Self-organized formation of topogically correct feature maps. Biol. Cybern., 43, 59-69. Zbl0466.92002MR667889
  11. [11] Kohonen, T. (1984). Self-organization and associative memory. Springer-Verlag, New York. Zbl0528.68062MR728946
  12. [12] Liggett, T.M. (1985). Interacting particle systems. Springer-Verlag, New-York. Zbl0559.60078MR776231
  13. [13] Liggett, T.M.et F. Spitzer (1981). Ergodic theorems for coupled random walks and other systems with locally interacting components. Z. Warsch. Verw. Gebiete, 56, 443-448. Zbl0444.60096MR621659
  14. [14] Spitzer, F. (1981). Infinite systems with locally interacting components. Ann. Probab., 9, 349-364. Zbl0462.60096MR614623
  15. [15] Yang H. et T.S. Dillon (1992). Convergence of self-organizing neural algorithms. Neural Networks, 5, 485-493. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.