Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie
Séminaire de probabilités de Strasbourg (1996)
- Volume: 30, page 55-67
Access Full Article
topHow to cite
topKipnis, Claude, and Saada, Ellen. "Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie." Séminaire de probabilités de Strasbourg 30 (1996): 55-67. <http://eudml.org/doc/113943>.
@article{Kipnis1996,
author = {Kipnis, Claude, Saada, Ellen},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {retinotopy model; local interactions; linear system; particle systems; moments; limiting distribution},
language = {eng},
pages = {55-67},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie},
url = {http://eudml.org/doc/113943},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Kipnis, Claude
AU - Saada, Ellen
TI - Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie
JO - Séminaire de probabilités de Strasbourg
PY - 1996
PB - Springer - Lecture Notes in Mathematics
VL - 30
SP - 55
EP - 67
LA - eng
KW - retinotopy model; local interactions; linear system; particle systems; moments; limiting distribution
UR - http://eudml.org/doc/113943
ER -
References
top- [1] Bouton, C. et G. Pages (1993). Self-organization and convergence of the one-dimensional Kohonen algorithm with non uniformly distributed stimuli. Stoch. Proc. and Appl., 47, 249-274. Zbl0779.60075MR1239840
- [2] Cocozza, C. et C. Kipnis (1977). Existence de processus Markoviens pour des systèmes infinis de particules. Ann. Inst. Henri Poincaré, sect. B, 13, 239-257. Zbl0384.60079MR488376
- [3] Cottrell, M. et J.C. Fort (1986). A stochastic model of retinotopy: a self-organizing process. Biol. Cybern., 53, 405-411. Zbl0605.92001MR839498
- [4] Cottrell, M. et J.C. Fort (1987). Etude d'un processus d'auto-organisation. Ann. Inst. Henri Poincaré, sect. B, 23, 1-20. Zbl0605.92002MR877382
- [5] Duflo, M. (1994). Algorithmes stochastiques. Poly. de DEA, univ. de Marne-la-Vallée.
- [6] Durrett, R. (1991). Probability: Theory and examples. Wadsworth & Brooks /Cole. Zbl0709.60002
- [7] Durrett, R. (1993). Ten Lectures on Particle Systems. Notes du cours d'été de Saint-Flour. Zbl0840.60088
- [8] Feller, W. (1968). An introduction to probability theory and its applications, vol 1, 3rd edition. Wiley, New York. Zbl0155.23101MR228020
- [9] Fort, J.C.et G. Pages (1994). About the a.s. convergence of the Kohonen algorithm with a generalized neighbourhood function. Preprint. Zbl0781.60027MR1384371
- [10] Kohonen, T. (1982). Self-organized formation of topogically correct feature maps. Biol. Cybern., 43, 59-69. Zbl0466.92002MR667889
- [11] Kohonen, T. (1984). Self-organization and associative memory. Springer-Verlag, New York. Zbl0528.68062MR728946
- [12] Liggett, T.M. (1985). Interacting particle systems. Springer-Verlag, New-York. Zbl0559.60078MR776231
- [13] Liggett, T.M.et F. Spitzer (1981). Ergodic theorems for coupled random walks and other systems with locally interacting components. Z. Warsch. Verw. Gebiete, 56, 443-448. Zbl0444.60096MR621659
- [14] Spitzer, F. (1981). Infinite systems with locally interacting components. Ann. Probab., 9, 349-364. Zbl0462.60096MR614623
- [15] Yang H. et T.S. Dillon (1992). Convergence of self-organizing neural algorithms. Neural Networks, 5, 485-493.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.