Some polar sets for the brownian sheet
Séminaire de probabilités de Strasbourg (1997)
- Volume: 31, page 190-197
Access Full Article
topHow to cite
topKhoshnevisan, Davar. "Some polar sets for the brownian sheet." Séminaire de probabilités de Strasbourg 31 (1997): 190-197. <http://eudml.org/doc/113952>.
@article{Khoshnevisan1997,
author = {Khoshnevisan, Davar},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {-parameter Brownian sheet; polar set},
language = {eng},
pages = {190-197},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Some polar sets for the brownian sheet},
url = {http://eudml.org/doc/113952},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Khoshnevisan, Davar
TI - Some polar sets for the brownian sheet
JO - Séminaire de probabilités de Strasbourg
PY - 1997
PB - Springer - Lecture Notes in Mathematics
VL - 31
SP - 190
EP - 197
LA - eng
KW - -parameter Brownian sheet; polar set
UR - http://eudml.org/doc/113952
ER -
References
top- [A1] R.J. Adler (1981). The Geometry of Random Fields, Wiley, London Zbl0478.60059MR611857
- [A2] R.J. Adler (1990). An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Institute of Mathematical Statistics Lecture Notes—Monograph Series, Vol. 12 Zbl0747.60039MR1088478
- [BBK] R.F. Bass, K. Burdzy AND D. Khoshnevisan (1994). Intersection local time for points of infinite multiplicity, Ann. Prob., 22, 566-625 Zbl0814.60078MR1288124
- [BK] R.F. Bass AND D. Khoshnevisan (1993). Intersection local times and Tanaka formulas, Ann. Inst. Henri Poincaré: Prob. et Stat., 29, 419-451 Zbl0798.60072MR1246641
- [BG] R. Blumenthal AND R.K. Getoor (1968). Markov Processes and Potential Theory. Academic Press.New York Zbl0169.49204MR264757
- [C] X. Chen (1994). Hausdorff dimension of multiple points of the (N.d) Wiener process, Indiana Univ. Math. J.. 43(1), 55-60 Zbl0797.60065MR1275452
- [DEK1] A. Dvoretsky, P. Erdös AND S. Kakutani (1950). Double points of paths of Brownian motion in n-space, Acta. Sci. Math. (Szeged), 12. 74-81 Zbl0036.09001MR34972
- [DEK2] A. Dvoretsky, P. Erdös AND S. Kakutani (1954). Multiple points of Brownian motion in the plane, Bull. Res. Council Israel Section F, 3, 364-371 MR67402
- [DEKT] A. Dvoretsky, P. Erdös, S. Kakutani AND S.J. Taylor (1957). Triple points of Brownian motion in 3-space. Proc. Camb. Phil. Soc., 53, 856-862 Zbl0208.44103MR94855
- [D1] E.B. Dynkin (1988). Self-intersection gauge for random walks and for Brownian motion, Ann. Prob., 16, 1-57 Zbl0638.60081MR920254
- [D2] E.B. Dynkin (1985). Random fields associated with multiple points of Brownian motion, J. Funct. Anal., 62, 397-434 Zbl0579.60081MR794777
- [E] W. Ehm (1981). Sample function properties of multiparameter stable processes, Zeit. Wahr. verw. Geb., 56, 195-228 Zbl0471.60046MR618272
- [E1] S.N. Evans (1987) Multiple points in the sample paths of a Lévy process, Prob. Th. Rel. Fields, 76, 359-367 MR912660
- [E2] S.N. Evans (1987) Potential theory for a family of several Markov processes, Ann. Inst. Henri Poincaré: Prob. et Stat., 23, 499-530 Zbl0625.60086MR906728
- [FS-1] P.J. Fitzsimmons AND T.S. Salisbury (1989). Capacity and energy for multi-parameter Markov processes, Ann. Inst. Henri Poincaré: Prob. et Stat., 25, 325-350 Zbl0689.60071MR1023955
- [FS-2] P.J. Fitzsimmons AND T.S. Salisbury Forthcoming Manuscript.
- [F] B. Fristedt (1995). Math. Reviews, review 95b:60100, February 1995 issue
- [HaP] J. Hawkes AND W.E. Pruitt (1974). Uniform dimension results for processes with independent increments, Zeit. Wahr. verw. Geb., 28, 277-288 Zbl0268.60063MR362508
- [H] W.J. Hendricks (1974). Multiple points for transient symmetric Lévy processes, Zeit. Wahr. verw. Geb.49, 13-21 Zbl0398.60042MR539660
- [K] J.P. Kahane (1985). Some Random Series of Functions, Cambridge Univ. Press, Cambridge, U.K. Zbl0571.60002MR833073
- [Ka] R. Kaufman (1969). Une propriété métrique du mouvement brownien, C.R. Acad. Sci.Paris, Sér. A, 268, 727-728 Zbl0174.21401MR240874
- [LG] J.F. Legall (1990). Some Properties of Planar Brownian Motion, Ecole d'été de Probabilités de St-Flour XX, LNM1527, 111-235 Zbl0779.60068MR1229519
- [OP] S. Orey AND W.E. Pruitt (1973). Sample functions of the N-parameter Wiener process, Ann. Prob., 1, 138-163 Zbl0284.60036MR346925
- [P] Y. Peres (1995). Intersection-equivalence of Brownian paths and certain branching processes, Comm. Math. Phys. (To appear) Zbl0851.60080MR1384142
- [R1] J. Rosen (1995). Joint continuity of renormalized intersection local times. Preprint
- [R2] J. Rosen (1984). Stochastic integrals and intersections of Brownian sheet. Unpublished manuscript
- [R3] J. Rosen (1984). Self-intersections of random fields, Ann. Prob., 12. 108-119 Zbl0536.60066MR723732
- [S] T.S. Salisbury (1995). Energy. and intersections of Markov chains, Proceedings of the IMA Workshop on Random Discrete Structures (To appear) Zbl0845.60068MR1395618
- [Sh] N.-R. Shieh (1991). White noise analysis and Tanaka formulae for intersections of planar Brownian motion, Nagoya Math. J., 122, 1-17 Zbl0759.60041MR1114018
- [T1] S.J. Taylor (1986). The measure theory of random fractals. Math. Proc. Camb. Phil. Soc., 100. 383-406 Zbl0622.60021MR857718
- [T2] S.J. Taylor (19). Multiple points for the sample paths of a transient stable process, J. Math. Mech., 16, 1229-1246 Zbl0178.19301
- [T3] S.J. Taylor (1966). Multiple points for the sample paths of the symmetric stable process, Zeit. Wahr. verw. Geb., 5, 247-264 Zbl0146.37905MR202193
- [V] S.R.S. Varadhan (1969). Appendix to "Euclidean Quantum Field Theory", by K. Symanzik. In Local Quantum Theory (ed.: R. Jost). Academic Press, New York
- [W] W. Werner (1993). Sur les singularités des temps locaux d'intersection du mouvement brownien plan, Ann. Inst. Henri. Poincaré: Prob. et Stat., 29, 391-418 Zbl0798.60071MR1246640
- [Y] M. Yor (1985). Compléments aux formules de Tanaka-Rosen, Sém. de Prob. XIX, LNM1123, 332-349 Zbl0563.60073MR889493
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.