The maximum maximum of a martingale

David G. Hobson

Séminaire de probabilités de Strasbourg (1998)

  • Volume: 32, page 250-263

How to cite

top

Hobson, David G.. "The maximum maximum of a martingale." Séminaire de probabilités de Strasbourg 32 (1998): 250-263. <http://eudml.org/doc/113988>.

@article{Hobson1998,
author = {Hobson, David G.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {martingale; maximum of a martingale; Hardy-Littlewood maximal measure; stochastic order},
language = {eng},
pages = {250-263},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The maximum maximum of a martingale},
url = {http://eudml.org/doc/113988},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Hobson, David G.
TI - The maximum maximum of a martingale
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 250
EP - 263
LA - eng
KW - martingale; maximum of a martingale; Hardy-Littlewood maximal measure; stochastic order
UR - http://eudml.org/doc/113988
ER -

References

top
  1. [1] Azéma, J., Gundy, R.F.AND Yor, M.; Sur l'integrabilité uniforme des martingales continues, Séminaire de Probabilités, XIV, 53-61, 1980. Zbl0442.60046MR580108
  2. [2] Azéma, J. AND Yor, M.; Une solution simple au problème de Skorokhod, Séminaire de Probabilités, XIII, 90-115, 1979. Zbl0414.60055MR544782
  3. [3] Bertoin, J. AND Le Jan, Y.; Representation of measures by balayage from a regular recurrent point, Annals of Probability, 20, 538-548, 1992. Zbl0749.60038MR1143434
  4. [4] Blackwell, D. AND Dubins, L.D.; A Converse to the Dominated Convergence Theorem, Illinois Journal of Mathematics, 7, 508-514, 1963. Zbl0146.37503MR151572
  5. [5] Chacon, R. AND Walsh, J.B.; One-dimensional potential embedding, Séminaire de Probabilités, X, 19-23, 1976. Zbl0329.60041MR445598
  6. [6] Dubins, L.D.; On a theorem of Skorokhod, Annals of Mathematical Statistics, 39, 2094-2097, 1968. Zbl0185.45103MR234520
  7. [7] Dubins, L.D.AND Gilat, D.; On the distribution of maxima of martingales, Proceedings of the American Mathematical Society, 68, 337-338, 1978. Zbl0351.60049MR494473
  8. [8] Hobson, D.G.; Robust hedging of the lookback option, To appear in Finance and Stochastics, 1998. Zbl0907.90023
  9. [9] Kertz, R.P.AND Rösler, U.; Martingales with given maxima and terminal distributions, Israel J. Math., 69, 173-192, 1990. Zbl0743.60046MR1045372
  10. [10] Meyer, P.A.; Probability and Potentials, Blaidsell, Waltham, Mass., 1966. Zbl0138.10401MR205288
  11. [11] Perkins, E.; The Cereteli-Davis solution to the H1-embedding problem and an optimal embedding in Brownian motion, Seminar on Stochastic Processes, 1985, Birkhauser, Boston, 173-223, 1986. Zbl0607.60071MR896743
  12. [12] Rogers, L.C.G.; Williams' characterisation of the Brownian excursion law: proof and applications, Séminaire de Probabilités, XV, 227-250, 1981. Zbl0462.60078MR622566
  13. [13] Rogers, L.C.G.; A guided tour through excursions, Bull. London Math. Soc., 21, 305-341, 1989. Zbl0689.60075MR998631
  14. [14] Rogers, L.C.G.; The joint law of the maximum and the terminal value of a martingale, Prob. Th. Rel. Fields, 95, 451-466, 1993. Zbl0794.60042MR1217446
  15. [15] Rösler, U.; Personal communication. 
  16. [16] Strassen, V.; The existence of probability measures with given marginals, Ann. Math. Statist., 36, 423-439, 1965. Zbl0135.18701MR177430
  17. [17] Vallois, P.; Sur la loi du maximum et du temps local d'une martingale continue uniformément intégrable, Proc. London Math. Soc., 3, 399-427, 1994. Zbl0807.60041MR1281971

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.