Le théorème de Ray-Knight à temps fixe

Christophe Leuridan

Séminaire de probabilités de Strasbourg (1998)

  • Volume: 32, page 376-396

How to cite

top

Leuridan, Christophe. "Le théorème de Ray-Knight à temps fixe." Séminaire de probabilités de Strasbourg 32 (1998): 376-396. <http://eudml.org/doc/113997>.

@article{Leuridan1998,
author = {Leuridan, Christophe},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian motion; local time; Ray-Knight theorem},
language = {fre},
pages = {376-396},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Le théorème de Ray-Knight à temps fixe},
url = {http://eudml.org/doc/113997},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Leuridan, Christophe
TI - Le théorème de Ray-Knight à temps fixe
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 376
EP - 396
LA - fre
KW - Brownian motion; local time; Ray-Knight theorem
UR - http://eudml.org/doc/113997
ER -

References

top
  1. [1] Biane P., Yor M. — Sur la loi des temps locaux pris en un temps exponentiel, Sém. Prob. XXII, LNM1321, Springer (1988),454-466. Zbl0652.60081MR960541
  2. [2] Eisenbaum N. — Un théorème de Ray-Knight lié au supremum des temps locaux browniens, PTRF87 (1990), 79-95. Zbl0688.60060MR1076957
  3. [3] Van Der Hofstad R. , Den Hollander F., König W. — Central limit theorem for the Edwards model, Annals of Probability25 (2) (1997), 573-597. Zbl0873.60009MR1434119
  4. [4] Jeulin T., Yor M. — Grossissement de filtrations: exemples et applications, LNM1118, Springer, 1985. Zbl0547.00034MR884713
  5. [5] Knight F.B.. — Random walks and a sojourn density process of brownian motion, Trans. Am. Math. Soc.109 (1963), 56-86. Zbl0119.14604MR154337
  6. [6] Leuridan C. — Une démonstration élémentaire d'une identité de Biane et Yor, Sém. Prob. XXX, LNM1626, Springer (1996), 255-260. Zbl0861.60086MR1459488
  7. [7] Perkins E. — Local time is a semimartingale, Z.W.60 (1982), 79-117. Zbl0468.60070MR661760
  8. [8] Ray D.B. — Sojourn times of a diffusion process, Ill. J. Math.7 (1963), 615-630. Zbl0118.13403MR156383
  9. [9] Revuz D., Yor M. — Continuous martingales and brownian motion, Springer, 1991. Zbl0731.60002MR1083357
  10. [10] Vallois P. — Une extension des théorèmes de Ray et Knight sur les temps locaux browniens, PTRF 88, vol 4 (1991), 445-482. Zbl0723.60097MR1105713

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.