Théorème de Ray-Knight dans un arbre : une approche algébrique
Séminaire de probabilités de Strasbourg (2002)
- Volume: 36, page 270-301
Access Full Article
topHow to cite
topLeuridan, Christophe. "Théorème de Ray-Knight dans un arbre : une approche algébrique." Séminaire de probabilités de Strasbourg 36 (2002): 270-301. <http://eudml.org/doc/114092>.
@article{Leuridan2002,
author = {Leuridan, Christophe},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {local time; Ray-Knight theorem},
language = {fre},
pages = {270-301},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Théorème de Ray-Knight dans un arbre : une approche algébrique},
url = {http://eudml.org/doc/114092},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Leuridan, Christophe
TI - Théorème de Ray-Knight dans un arbre : une approche algébrique
JO - Séminaire de probabilités de Strasbourg
PY - 2002
PB - Springer - Lecture Notes in Mathematics
VL - 36
SP - 270
EP - 301
LA - fre
KW - local time; Ray-Knight theorem
UR - http://eudml.org/doc/114092
ER -
References
top- [1] Bertoin J.Lévy processes. Cambridge tracts in mathematics121 (1996). Zbl0861.60003MR1406564
- [2] Biane P., Yor M.Sur la loi des temps locaux browniens pris en temps exponentiel. Séminaire de Probabilité XXIILecture Notes in Mathematics1321 (1988), 454-466. Zbl0652.60081MR960541
- [3] Blumenthal R.M., Getoor R.K.Markov Processes and Potential Theory, Academic Press, New York (1968). Zbl0169.49204MR264757
- [4] Dynkin E.B.Local times and quantum fields. Seminar on Stochastic Processes, Birkhauser26-4 (1983), 69-89. Zbl0554.60058MR902412
- [5] Eisenbaum N.Dynkin's isomorphism theorem and Ray-Knight theorems. Probability Theory and Related Fields99 (1994), 321-335. Zbl0801.60064MR1278888
- [6] Eisenbaum N.Une version sans conditionnement du théorème d'isomorphisme de Dynkin. Séminaire de Probabilité XXIXLecture Notes in Mathematics1613 (1995), 266-289. Zbl0849.60075MR1459468
- [7] Eisenbaum N., Kaspi H.A necessary and sufficient condition for the Markov property of the local time process. Annals of Probability21-3 (1993), 1591-1598. Zbl0788.60091MR1235430
- [8] Eisenbaum N., Kaspi H.A counterexample for the Markov property of local time for diffusions on graphs. Séminaire de Probabilité XXIXLecture Notes in Mathematics1613 (1995), 260-265. Zbl0849.60076MR1459467
- [9] Eisenbaum N., Kaspi H.On the Markov property of local time for Markov processes on graphs. Stochastic Processes and their Applications64 (1996), 153-172. Zbl0879.60075MR1424233
- [10] Fitzsimmons., Pitman J.Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Processes and their Applications79 (1999), 117-134. Zbl0962.60067MR1670526
- [11] Jeulin T.Ray-Knight's theorem on Brownian local times and Tanaka's formula. Seminar on Stochastic Processes, Birkhauser (1983) 131-142. Zbl0561.60077MR902415
- [12] Knight F.B.Random walks and a sojourn density process of Brownian motion. Transactions of American Mathematical Society109 (1963) 56-86. Zbl0119.14604MR154337
- [13] Leuridan C.Le théorème de Ray-Knight à temps fixe. Séminaire de Probabilité XXXIILecture Notes in Mathematics1686 (1998), 376-396. Zbl0919.60073MR1655305
- [14] Marcus M.B., Rosen J.Sample path properties of local times of strongly symmetric Markov processes via Gaussian processes. Annals of probability20–4 (1992), 1603-1684. Zbl0762.60068MR1188037
- [15] Marcus M.B., Rosen J.Moment generating functions for local times of strongly symmetric Markov processes and random walks. Proceedings of the conference "Probability in Banach Spaces" Birkhauser8 (1992). Zbl0788.60092MR1227631
- [16] Meyer P.A.Sur les lois de certaines fonctionnelles additives : application aux temps locauxPublications de l'Institut de Statistiques des Universités de Paris, 15 (1966), 295-310. Zbl0144.40102MR208679
- [17] Pitman J., Yor M.A decomposition of Bessel bridges. Zeitschrift für Wahrscheinlichkeitstheorie und Verwante Gebiete59 (1982) 425-457. Zbl0484.60062MR656509
- [18] Ray D.Sojourn times of diffusion processes. Illinois Journal of Mathematics7 (1963) 615-630. Zbl0118.13403MR156383
- [19] Rogers L.C.G., Williams D.Diffusions, Markov processes, and Martingales Volume 1 : Foundations, second edition, John Wiley and Sons (1994). Zbl0826.60002MR1331599
- [20] Sheppard P.On the Ray-Knight property of local times. Journal of London Mathematical Society31 (1985), 377-384. Zbl0535.60070MR809960
- [21] Walsh J.B.Excursions and local time. Temps Locaux, Astérisque52-53 (1978),159-192.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.