Théorème de Ray-Knight dans un arbre : une approche algébrique

Christophe Leuridan

Séminaire de probabilités de Strasbourg (2002)

  • Volume: 36, page 270-301

How to cite

top

Leuridan, Christophe. "Théorème de Ray-Knight dans un arbre : une approche algébrique." Séminaire de probabilités de Strasbourg 36 (2002): 270-301. <http://eudml.org/doc/114092>.

@article{Leuridan2002,
author = {Leuridan, Christophe},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {local time; Ray-Knight theorem},
language = {fre},
pages = {270-301},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Théorème de Ray-Knight dans un arbre : une approche algébrique},
url = {http://eudml.org/doc/114092},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Leuridan, Christophe
TI - Théorème de Ray-Knight dans un arbre : une approche algébrique
JO - Séminaire de probabilités de Strasbourg
PY - 2002
PB - Springer - Lecture Notes in Mathematics
VL - 36
SP - 270
EP - 301
LA - fre
KW - local time; Ray-Knight theorem
UR - http://eudml.org/doc/114092
ER -

References

top
  1. [1] Bertoin J.Lévy processes. Cambridge tracts in mathematics121 (1996). Zbl0861.60003MR1406564
  2. [2] Biane P., Yor M.Sur la loi des temps locaux browniens pris en temps exponentiel. Séminaire de Probabilité XXIILecture Notes in Mathematics1321 (1988), 454-466. Zbl0652.60081MR960541
  3. [3] Blumenthal R.M., Getoor R.K.Markov Processes and Potential Theory, Academic Press, New York (1968). Zbl0169.49204MR264757
  4. [4] Dynkin E.B.Local times and quantum fields. Seminar on Stochastic Processes, Birkhauser26-4 (1983), 69-89. Zbl0554.60058MR902412
  5. [5] Eisenbaum N.Dynkin's isomorphism theorem and Ray-Knight theorems. Probability Theory and Related Fields99 (1994), 321-335. Zbl0801.60064MR1278888
  6. [6] Eisenbaum N.Une version sans conditionnement du théorème d'isomorphisme de Dynkin. Séminaire de Probabilité XXIXLecture Notes in Mathematics1613 (1995), 266-289. Zbl0849.60075MR1459468
  7. [7] Eisenbaum N., Kaspi H.A necessary and sufficient condition for the Markov property of the local time process. Annals of Probability21-3 (1993), 1591-1598. Zbl0788.60091MR1235430
  8. [8] Eisenbaum N., Kaspi H.A counterexample for the Markov property of local time for diffusions on graphs. Séminaire de Probabilité XXIXLecture Notes in Mathematics1613 (1995), 260-265. Zbl0849.60076MR1459467
  9. [9] Eisenbaum N., Kaspi H.On the Markov property of local time for Markov processes on graphs. Stochastic Processes and their Applications64 (1996), 153-172. Zbl0879.60075MR1424233
  10. [10] Fitzsimmons., Pitman J.Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Processes and their Applications79 (1999), 117-134. Zbl0962.60067MR1670526
  11. [11] Jeulin T.Ray-Knight's theorem on Brownian local times and Tanaka's formula. Seminar on Stochastic Processes, Birkhauser (1983) 131-142. Zbl0561.60077MR902415
  12. [12] Knight F.B.Random walks and a sojourn density process of Brownian motion. Transactions of American Mathematical Society109 (1963) 56-86. Zbl0119.14604MR154337
  13. [13] Leuridan C.Le théorème de Ray-Knight à temps fixe. Séminaire de Probabilité XXXIILecture Notes in Mathematics1686 (1998), 376-396. Zbl0919.60073MR1655305
  14. [14] Marcus M.B., Rosen J.Sample path properties of local times of strongly symmetric Markov processes via Gaussian processes. Annals of probability20–4 (1992), 1603-1684. Zbl0762.60068MR1188037
  15. [15] Marcus M.B., Rosen J.Moment generating functions for local times of strongly symmetric Markov processes and random walks. Proceedings of the conference "Probability in Banach Spaces" Birkhauser8 (1992). Zbl0788.60092MR1227631
  16. [16] Meyer P.A.Sur les lois de certaines fonctionnelles additives : application aux temps locauxPublications de l'Institut de Statistiques des Universités de Paris, 15 (1966), 295-310. Zbl0144.40102MR208679
  17. [17] Pitman J., Yor M.A decomposition of Bessel bridges. Zeitschrift für Wahrscheinlichkeitstheorie und Verwante Gebiete59 (1982) 425-457. Zbl0484.60062MR656509
  18. [18] Ray D.Sojourn times of diffusion processes. Illinois Journal of Mathematics7 (1963) 615-630. Zbl0118.13403MR156383
  19. [19] Rogers L.C.G., Williams D.Diffusions, Markov processes, and Martingales Volume 1 : Foundations, second edition, John Wiley and Sons (1994). Zbl0826.60002MR1331599
  20. [20] Sheppard P.On the Ray-Knight property of local times. Journal of London Mathematical Society31 (1985), 377-384. Zbl0535.60070MR809960
  21. [21] Walsh J.B.Excursions and local time. Temps Locaux, Astérisque52-53 (1978),159-192. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.