A bipolar theorem for L + 0 ( Ω , , 𝐏 )

Werner Brannath; Walter Schachermayer

Séminaire de probabilités de Strasbourg (1999)

  • Volume: 33, page 349-354

How to cite

top

Brannath, Werner, and Schachermayer, Walter. "A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$." Séminaire de probabilités de Strasbourg 33 (1999): 349-354. <http://eudml.org/doc/114021>.

@article{Brannath1999,
author = {Brannath, Werner, Schachermayer, Walter},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {bipolar theorem; convex sets of measurable functions; space of real-valued random variables; topology of convergence in probability; orthant of positive elements; bounded in probability; hereditarily unbounded in probability},
language = {eng},
pages = {349-354},
publisher = {Springer - Lecture Notes in Mathematics},
title = {A bipolar theorem for L$\{\}_+^0(\Omega ,\{\mathcal \{F\}\},\{\bf P\})$},
url = {http://eudml.org/doc/114021},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Brannath, Werner
AU - Schachermayer, Walter
TI - A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$
JO - Séminaire de probabilités de Strasbourg
PY - 1999
PB - Springer - Lecture Notes in Mathematics
VL - 33
SP - 349
EP - 354
LA - eng
KW - bipolar theorem; convex sets of measurable functions; space of real-valued random variables; topology of convergence in probability; orthant of positive elements; bounded in probability; hereditarily unbounded in probability
UR - http://eudml.org/doc/114021
ER -

References

top
  1. [B 97]. W. Brannath, No Arbitrage and Martingale Measures in Option Pricing, Dissertation. University of Vienna (1997). 
  2. [DS 94]. F. Delbaen, W. Schachermayer, A General Version of the Fundamental Theorem of Asset Pricing, Math. Annalen300 (1994), 463 — 520. Zbl0865.90014MR1304434
  3. [HS 49]. Halmos. P.R., Savage, L.J. (1949), Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics, Annals of Math. Statistics20, 225-241.. Zbl0034.07502MR30730
  4. [KS 97]. D. Kramkov, W. Schachermayer, A Condition on the Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Markets, Preprint (1997). MR1722287
  5. [KPR 84]. N.J. Kalton, N.T. Peck, J.W. Roberts, An F-space Sampler, London Math. Soc. Lecture Notes89 (1984). Zbl0556.46002MR808777
  6. [M 74]. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espace Lp, Astérisque11 (1974). Zbl0278.46028MR344931
  7. [Me 79]. P.A., Meyer, Caractérisation des semimartingales, d'après Dellacherie, Séminaire de Probabilités XIII, Lect. Notes Mathematics721 (1979), 620 — 623. Zbl0405.60049MR544830
  8. [N 70]. E.M. Nikishin, Resonance theorems and superlinear operators, Uspekhi Mat. Nauk25, Nr. 6 (1970), 129 — 191. Zbl0222.47024MR296584
  9. [S 94]. W. Schachermayer, Martingale measures for discrete time processes with infinite horizon, Math. Finance4 (1994), 25 — 55. Zbl0893.90017MR1286705
  10. [Sch 67]. Schaefer, H.H. (1966), Topological Vector Spaces, SpringerGraduate Texts in Mathematics. Zbl0217.16002MR193469
  11. [Str 90]. Stricker, C., Arbitrage et lois de martingale, Ann. Inst. Henri. Pincaré Vol. 26, no. 3 (1990), 451-460. Zbl0704.60045MR1066088
  12. [Y 80]. J.A. Yan, Caractérisation d' une classe d'ensembles convexes de L1 ou H1, Séminaire de Probabilités XIV, Lect. Notes Mathematics784 (1980), 220-222. Zbl0429.60004MR580127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.