A bipolar theorem for L
Werner Brannath; Walter Schachermayer
Séminaire de probabilités de Strasbourg (1999)
- Volume: 33, page 349-354
Access Full Article
topHow to cite
topBrannath, Werner, and Schachermayer, Walter. "A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$." Séminaire de probabilités de Strasbourg 33 (1999): 349-354. <http://eudml.org/doc/114021>.
@article{Brannath1999,
author = {Brannath, Werner, Schachermayer, Walter},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {bipolar theorem; convex sets of measurable functions; space of real-valued random variables; topology of convergence in probability; orthant of positive elements; bounded in probability; hereditarily unbounded in probability},
language = {eng},
pages = {349-354},
publisher = {Springer - Lecture Notes in Mathematics},
title = {A bipolar theorem for L$\{\}_+^0(\Omega ,\{\mathcal \{F\}\},\{\bf P\})$},
url = {http://eudml.org/doc/114021},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Brannath, Werner
AU - Schachermayer, Walter
TI - A bipolar theorem for L${}_+^0(\Omega ,{\mathcal {F}},{\bf P})$
JO - Séminaire de probabilités de Strasbourg
PY - 1999
PB - Springer - Lecture Notes in Mathematics
VL - 33
SP - 349
EP - 354
LA - eng
KW - bipolar theorem; convex sets of measurable functions; space of real-valued random variables; topology of convergence in probability; orthant of positive elements; bounded in probability; hereditarily unbounded in probability
UR - http://eudml.org/doc/114021
ER -
References
top- [B 97]. W. Brannath, No Arbitrage and Martingale Measures in Option Pricing, Dissertation. University of Vienna (1997).
- [DS 94]. F. Delbaen, W. Schachermayer, A General Version of the Fundamental Theorem of Asset Pricing, Math. Annalen300 (1994), 463 — 520. Zbl0865.90014MR1304434
- [HS 49]. Halmos. P.R., Savage, L.J. (1949), Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics, Annals of Math. Statistics20, 225-241.. Zbl0034.07502MR30730
- [KS 97]. D. Kramkov, W. Schachermayer, A Condition on the Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Markets, Preprint (1997). MR1722287
- [KPR 84]. N.J. Kalton, N.T. Peck, J.W. Roberts, An F-space Sampler, London Math. Soc. Lecture Notes89 (1984). Zbl0556.46002MR808777
- [M 74]. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espace Lp, Astérisque11 (1974). Zbl0278.46028MR344931
- [Me 79]. P.A., Meyer, Caractérisation des semimartingales, d'après Dellacherie, Séminaire de Probabilités XIII, Lect. Notes Mathematics721 (1979), 620 — 623. Zbl0405.60049MR544830
- [N 70]. E.M. Nikishin, Resonance theorems and superlinear operators, Uspekhi Mat. Nauk25, Nr. 6 (1970), 129 — 191. Zbl0222.47024MR296584
- [S 94]. W. Schachermayer, Martingale measures for discrete time processes with infinite horizon, Math. Finance4 (1994), 25 — 55. Zbl0893.90017MR1286705
- [Sch 67]. Schaefer, H.H. (1966), Topological Vector Spaces, SpringerGraduate Texts in Mathematics. Zbl0217.16002MR193469
- [Str 90]. Stricker, C., Arbitrage et lois de martingale, Ann. Inst. Henri. Pincaré Vol. 26, no. 3 (1990), 451-460. Zbl0704.60045MR1066088
- [Y 80]. J.A. Yan, Caractérisation d' une classe d'ensembles convexes de L1 ou H1, Séminaire de Probabilités XIV, Lect. Notes Mathematics784 (1980), 220-222. Zbl0429.60004MR580127
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.