The distribution of local times of a brownian bridge
Séminaire de probabilités de Strasbourg (1999)
- Volume: 33, page 388-394
Access Full Article
topHow to cite
topPitman, Jim. "The distribution of local times of a brownian bridge." Séminaire de probabilités de Strasbourg 33 (1999): 388-394. <http://eudml.org/doc/114024>.
@article{Pitman1999,
author = {Pitman, Jim},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian bridge; local time},
language = {eng},
pages = {388-394},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The distribution of local times of a brownian bridge},
url = {http://eudml.org/doc/114024},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Pitman, Jim
TI - The distribution of local times of a brownian bridge
JO - Séminaire de probabilités de Strasbourg
PY - 1999
PB - Springer - Lecture Notes in Mathematics
VL - 33
SP - 388
EP - 394
LA - eng
KW - Brownian bridge; local time
UR - http://eudml.org/doc/114024
ER -
References
top- [1] D. Aldous and J. Pitman. Brownian bridge asymptotics for random mappings. Random Structures and Algorithms, 5:487-512, 1994. Zbl0811.60057MR1293075
- [2] D.J. Aldous and J. Pitman. The standard additive coalescent. Technical Report 489, Dept. Statistics, U.C. Berkeley, 1997. To appear in Ann. Probab.. Available via http://www.stat.berkeley.edu/users/pitman. Zbl0936.60064MR1675063
- [3] D.J. Aldous and J. Pitman. Tree-valued Markov chains derived from Galton-Vatson processes. Ann. Inst. Henri Poincaré, 34:637-686, 1998. Zbl0917.60082MR1641670
- [4] R.F. Bass and D. Khoshnevisan. Laws of the iterated logarithm for local times of the empirical process. Ann. Probab., 23:388 - 399, 1995. Zbl0845.60079MR1330775
- [5] J. Bertoin and J. Pitman. Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. (2), 118:147-166, 1994. Zbl0805.60076MR1268525
- [6] Ph. Biane and M. Yor. Sur la loi des temps locaux Browniens pris en un temps exponentiel. In Séminaire de Probabilités XXII, pages 454-466. Springer, 1988. Lecture Notes in Math.1321. Zbl0652.60081MR960541
- [7] A.N. Borodin. Brownian local time. Russian Math. Surveys, 44:2:1-51, 1989. Zbl0705.60064MR998360
- [8] K.L. Chung. Excursions in Brownian motion. Arkiv fur Matematik, 14:155-177, 1976. Zbl0356.60033MR467948
- [9] S.N. Evans and J. Pitman. Stopped Markov chains with stationary occupation times. Probab. Th. Rel. Fields, 109:425-433, 1997. Zbl0888.60058MR1481128
- [10] P. Fitzsimmons, J. Pitman, and M. Yor. Markovian bridges: construction, Palm interpretation, and splicing. In E. Çinlar, K.L. Chung, and M.J. Sharpe, editors, Seminar on Stochastic Processes, 1992, pages 101-134. Birkhäuser, Boston, 1993. Zbl0844.60054MR1278079
- [11] P. Howard and K. Zumbrun. Invariance of the occupation time of the Brownian bridge process. Preprint, Indiana Univerity. Available via http://www.math.indiana.edu/home/zumbrun, 1998. Zbl0938.60072MR1665788
- [12] J.P. Imhof. On Brownian bridge and excursion. Studia Sci. Math. Hungar., 20:1-10, 1985. Zbl0625.60096MR885996
- [13] N.N. Lebedev. Special Functions and their Applications. Prentice-Hall, Englewood Cliffs, N.J., 1965. Zbl0131.07002MR174795
- [14] C. Leuridan. Le théorème de Ray-Knight à temps fixe. In J. Azéma, M. Émery, M. Ledoux, and M. Yor, editors, Séminaire de Probabilités XXXII, pages 376-406. Springer, 1998. Lecture Notes in Math.1686. Zbl0919.60073MR1655305
- [15] P. Lévy. Sur certains processus stochastiques homogènes. Compositio Math., 7:283-339, 1939. Zbl0022.05903MR919JFM65.1346.02
- [16] J. Pitman. Cyclically stationary Brownian local time processes. Probab. Th. Rel. Fields, 106:299-329, 1996. Zbl0857.60074MR1418842
- [17] J. Pitman. The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest. Technical Report 503, Dept. Statistics, U.C. Berkeley, 1997. To appear in Ann. Prob.. Available via http://www.stat.berkeley.edu/users/pitman. Zbl0954.60060MR1681110
- [18] J. Pitman and M. Yor. Some properties of the arc sine law related to its invariance under a family of rational maps. In preparation, 1998. Zbl1268.37071
- [19] D.B. Ray. Sojourn times of a diffusion process. Ill. J. Math., 7:615-630. 1963. Zbl0118.13403MR156383
- [20] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer, Berlin-Heidelberg, 1994. 2nd edition. Zbl0804.60001MR1303781
- [21] G.R. Shorack and J.A. Wellner. Empirical processes with applications to statistics. John Wiley & Sons, New York, 1986. Zbl1170.62365
- [22] S.S. Wilks. Certain generalizations in the analysis of variance. Biometrika, 24:471-494, 1932. Zbl0006.02301JFM58.1172.02
- [23] D. Williams. Path decomposition and continuity of local time for one dimensional diffusions I. Proc. London Math. Soc. (3), 28:738-768, 1974. Zbl0326.60093MR350881
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.