The distribution of local times of a brownian bridge

Jim Pitman

Séminaire de probabilités de Strasbourg (1999)

  • Volume: 33, page 388-394

How to cite

top

Pitman, Jim. "The distribution of local times of a brownian bridge." Séminaire de probabilités de Strasbourg 33 (1999): 388-394. <http://eudml.org/doc/114024>.

@article{Pitman1999,
author = {Pitman, Jim},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian bridge; local time},
language = {eng},
pages = {388-394},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The distribution of local times of a brownian bridge},
url = {http://eudml.org/doc/114024},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Pitman, Jim
TI - The distribution of local times of a brownian bridge
JO - Séminaire de probabilités de Strasbourg
PY - 1999
PB - Springer - Lecture Notes in Mathematics
VL - 33
SP - 388
EP - 394
LA - eng
KW - Brownian bridge; local time
UR - http://eudml.org/doc/114024
ER -

References

top
  1. [1] D. Aldous and J. Pitman. Brownian bridge asymptotics for random mappings. Random Structures and Algorithms, 5:487-512, 1994. Zbl0811.60057MR1293075
  2. [2] D.J. Aldous and J. Pitman. The standard additive coalescent. Technical Report 489, Dept. Statistics, U.C. Berkeley, 1997. To appear in Ann. Probab.. Available via http://www.stat.berkeley.edu/users/pitman. Zbl0936.60064MR1675063
  3. [3] D.J. Aldous and J. Pitman. Tree-valued Markov chains derived from Galton-Vatson processes. Ann. Inst. Henri Poincaré, 34:637-686, 1998. Zbl0917.60082MR1641670
  4. [4] R.F. Bass and D. Khoshnevisan. Laws of the iterated logarithm for local times of the empirical process. Ann. Probab., 23:388 - 399, 1995. Zbl0845.60079MR1330775
  5. [5] J. Bertoin and J. Pitman. Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. (2), 118:147-166, 1994. Zbl0805.60076MR1268525
  6. [6] Ph. Biane and M. Yor. Sur la loi des temps locaux Browniens pris en un temps exponentiel. In Séminaire de Probabilités XXII, pages 454-466. Springer, 1988. Lecture Notes in Math.1321. Zbl0652.60081MR960541
  7. [7] A.N. Borodin. Brownian local time. Russian Math. Surveys, 44:2:1-51, 1989. Zbl0705.60064MR998360
  8. [8] K.L. Chung. Excursions in Brownian motion. Arkiv fur Matematik, 14:155-177, 1976. Zbl0356.60033MR467948
  9. [9] S.N. Evans and J. Pitman. Stopped Markov chains with stationary occupation times. Probab. Th. Rel. Fields, 109:425-433, 1997. Zbl0888.60058MR1481128
  10. [10] P. Fitzsimmons, J. Pitman, and M. Yor. Markovian bridges: construction, Palm interpretation, and splicing. In E. Çinlar, K.L. Chung, and M.J. Sharpe, editors, Seminar on Stochastic Processes, 1992, pages 101-134. Birkhäuser, Boston, 1993. Zbl0844.60054MR1278079
  11. [11] P. Howard and K. Zumbrun. Invariance of the occupation time of the Brownian bridge process. Preprint, Indiana Univerity. Available via http://www.math.indiana.edu/home/zumbrun, 1998. Zbl0938.60072MR1665788
  12. [12] J.P. Imhof. On Brownian bridge and excursion. Studia Sci. Math. Hungar., 20:1-10, 1985. Zbl0625.60096MR885996
  13. [13] N.N. Lebedev. Special Functions and their Applications. Prentice-Hall, Englewood Cliffs, N.J., 1965. Zbl0131.07002MR174795
  14. [14] C. Leuridan. Le théorème de Ray-Knight à temps fixe. In J. Azéma, M. Émery, M. Ledoux, and M. Yor, editors, Séminaire de Probabilités XXXII, pages 376-406. Springer, 1998. Lecture Notes in Math.1686. Zbl0919.60073MR1655305
  15. [15] P. Lévy. Sur certains processus stochastiques homogènes. Compositio Math., 7:283-339, 1939. Zbl0022.05903MR919JFM65.1346.02
  16. [16] J. Pitman. Cyclically stationary Brownian local time processes. Probab. Th. Rel. Fields, 106:299-329, 1996. Zbl0857.60074MR1418842
  17. [17] J. Pitman. The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest. Technical Report 503, Dept. Statistics, U.C. Berkeley, 1997. To appear in Ann. Prob.. Available via http://www.stat.berkeley.edu/users/pitman. Zbl0954.60060MR1681110
  18. [18] J. Pitman and M. Yor. Some properties of the arc sine law related to its invariance under a family of rational maps. In preparation, 1998. Zbl1268.37071
  19. [19] D.B. Ray. Sojourn times of a diffusion process. Ill. J. Math., 7:615-630. 1963. Zbl0118.13403MR156383
  20. [20] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer, Berlin-Heidelberg, 1994. 2nd edition. Zbl0804.60001MR1303781
  21. [21] G.R. Shorack and J.A. Wellner. Empirical processes with applications to statistics. John Wiley & Sons, New York, 1986. Zbl1170.62365
  22. [22] S.S. Wilks. Certain generalizations in the analysis of variance. Biometrika, 24:471-494, 1932. Zbl0006.02301JFM58.1172.02
  23. [23] D. Williams. Path decomposition and continuity of local time for one dimensional diffusions I. Proc. London Math. Soc. (3), 28:738-768, 1974. Zbl0326.60093MR350881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.