Time dependent subordination and Markov processes with jumps

Masao Nagasawa; Hiroshi Tanaka

Séminaire de probabilités de Strasbourg (2000)

  • Volume: 34, page 257-288

How to cite

top

Nagasawa, Masao, and Tanaka, Hiroshi. "Time dependent subordination and Markov processes with jumps." Séminaire de probabilités de Strasbourg 34 (2000): 257-288. <http://eudml.org/doc/114041>.

@article{Nagasawa2000,
author = {Nagasawa, Masao, Tanaka, Hiroshi},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Bochner subordination; time-inhomogeneous process; stochastic differential equation; Feynman-Kac formula; time-change},
language = {eng},
pages = {257-288},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Time dependent subordination and Markov processes with jumps},
url = {http://eudml.org/doc/114041},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Nagasawa, Masao
AU - Tanaka, Hiroshi
TI - Time dependent subordination and Markov processes with jumps
JO - Séminaire de probabilités de Strasbourg
PY - 2000
PB - Springer - Lecture Notes in Mathematics
VL - 34
SP - 257
EP - 288
LA - eng
KW - Bochner subordination; time-inhomogeneous process; stochastic differential equation; Feynman-Kac formula; time-change
UR - http://eudml.org/doc/114041
ER -

References

top
  1. Bochner, S., (1949): Diffusion equations and stochastic processes. Proc. Nat. Acad. Sci.USA, 35, 368-370. Zbl0033.06803MR30151
  2. Itô, K., (1951): On stochastic differential equations. Memoirs of the AMS, 4. American Math. Soc. Zbl0054.05803MR40618
  3. Kunita, H. & Watanabe, S., (1967) On square integrable martingales. Nagoya Math. J.30, 209-245. Zbl0167.46602
  4. Nagasawa, M., (1993): Schrödinger equations and Diffusion Theory. Birkhäuser Verlag, Basel Boston Berlin. Zbl0780.60003MR1227100
  5. Nagasawa, M., (1996): Quantum theory, theory of Brownian motions, and relativity theory. Chaos, Solitons and Fractals, 7, 631-643. Zbl1080.81539MR1405642
  6. Nagasawa, M., (1997): Time reversal of Markov processes and relativistic quantum theory. Chaos, Solitons and Fractals, 8, 1711-1772. Zbl0935.81040MR1477258
  7. Nagasawa, M., Tanaka, H., (1998): Stochastic differential equations of pure-jumps in relativistic quantum theory. Chaos, Solitons and Fractals, 10, No 8, 1265-1280. Zbl0963.81009MR1697664
  8. Nagasawa, M., Tanaka, H., (1999): The principle of variation for relativistic quantum particles. Preprint. Zbl0981.60100
  9. Sato, K., (1990): Subordination depending on a parameter. Probability Theory and Mathematical Statistics, Proc. Fifth Vilnius Conf. Vol. 2, 372-382. Zbl0732.60016MR1153891

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.