The principle of variation for relativistic quantum particles
Masao Nagasawa; Hiroshi Tanaka
Séminaire de probabilités de Strasbourg (2001)
- Volume: 35, page 1-27
Access Full Article
topHow to cite
topNagasawa, Masao, and Tanaka, Hiroshi. "The principle of variation for relativistic quantum particles." Séminaire de probabilités de Strasbourg 35 (2001): 1-27. <http://eudml.org/doc/114061>.
@article{Nagasawa2001,
author = {Nagasawa, Masao, Tanaka, Hiroshi},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {jump Markov processes; multiplicative functional; variational principle; Schrödinger processes},
language = {eng},
pages = {1-27},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The principle of variation for relativistic quantum particles},
url = {http://eudml.org/doc/114061},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Nagasawa, Masao
AU - Tanaka, Hiroshi
TI - The principle of variation for relativistic quantum particles
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 1
EP - 27
LA - eng
KW - jump Markov processes; multiplicative functional; variational principle; Schrödinger processes
UR - http://eudml.org/doc/114061
ER -
References
top- Dellacherie, C., Meyer P.A. (1987): Probabilités et potentiel, Chapitres, XII á XVI. Hermann, Paris. Zbl0624.60084MR898005
- Ikeda, N. & Watanabe, S. (1989): Stochastic Differential Equations and Diffusion Processes. North-Holland/Kodansha. Zbl0684.60040
- Ikeda, N. & Watanabe, S. (1962): On some relations between the harmonic measure and Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ.2, 79-95. Zbl0118.13401
- Kunita, H. and Watanabe, S. (1967): On square integrable martingales. Nagoya Math. J.30, 209-245. Zbl0167.46602MR217856
- Kunita, H. (1969): Absolute continuity of Markov processes and generators. Nagoya Math. J.36, 1-26. Zbl0186.51203MR250387
- Nagasawa, M. (1993): Schrödinger equations and Diffusion Theory. Birkhäuser Verlag, Basel Boston Berlin. Zbl0780.60003MR1227100
- Nagasawa, M. (1996): Quantum theory, theory of Brownian motions, and relativity theory. Chaos, Solitons and Fractals, 7, 631-643. Zbl1080.81539MR1405642
- Nagasawa, M. (1997): Time reversal of Markov processes and relativistic quantum theory. Chaos, Solitons and Fractals, 8, 1711-1772. Zbl0935.81040MR1477258
- Nagasawa, M., and Tanaka, H. (1998): Stochastic differential equations of pure-jumps in relativistic quantum theory. Chaos, Solitons and Fractals, 10, No 8,1265-1280. Zbl0963.81009MR1697664
- Nagasawa, M., and Tanaka, H. (1999): Time dependent subordination and Markov processes with jumps. Sém. de Probabilités, Springer (to appear). Zbl0963.60062MR1768068
- Sato, K., (1990): Subordination depending on a parameter. Probability Theory and Mathematical Statistics, Proc. Fifth Vilnius Conf. Vol. 2, 372-382. Zbl0732.60016MR1153891
- Skorokhod, A.V. (1965): Studies in the theory of random processes. Addison-Wesley Pub. Co. INC, Reading, Mass. Zbl0146.37701MR185620
- Vershik, A., Yor, M., (1995): Multiplicativité du processus gamma et étude asymptotique des lois stables d'indice α, lorsque α tend vers 0. Prepublications du Lab. de probab. de l'université Paris VI, 284 (1995).
- Watanabe, S. (1964): On discontinuous additive functionals and Lévy measures of a Markov process. Japanese J. Math.36, 429-469. Zbl0141.15703MR185675
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.