The principle of variation for relativistic quantum particles

Masao Nagasawa; Hiroshi Tanaka

Séminaire de probabilités de Strasbourg (2001)

  • Volume: 35, page 1-27

How to cite

top

Nagasawa, Masao, and Tanaka, Hiroshi. "The principle of variation for relativistic quantum particles." Séminaire de probabilités de Strasbourg 35 (2001): 1-27. <http://eudml.org/doc/114061>.

@article{Nagasawa2001,
author = {Nagasawa, Masao, Tanaka, Hiroshi},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {jump Markov processes; multiplicative functional; variational principle; Schrödinger processes},
language = {eng},
pages = {1-27},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The principle of variation for relativistic quantum particles},
url = {http://eudml.org/doc/114061},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Nagasawa, Masao
AU - Tanaka, Hiroshi
TI - The principle of variation for relativistic quantum particles
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 1
EP - 27
LA - eng
KW - jump Markov processes; multiplicative functional; variational principle; Schrödinger processes
UR - http://eudml.org/doc/114061
ER -

References

top
  1. Dellacherie, C., Meyer P.A. (1987): Probabilités et potentiel, Chapitres, XII á XVI. Hermann, Paris. Zbl0624.60084MR898005
  2. Ikeda, N. & Watanabe, S. (1989): Stochastic Differential Equations and Diffusion Processes. North-Holland/Kodansha. Zbl0684.60040
  3. Ikeda, N. & Watanabe, S. (1962): On some relations between the harmonic measure and Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ.2, 79-95. Zbl0118.13401
  4. Kunita, H. and Watanabe, S. (1967): On square integrable martingales. Nagoya Math. J.30, 209-245. Zbl0167.46602MR217856
  5. Kunita, H. (1969): Absolute continuity of Markov processes and generators. Nagoya Math. J.36, 1-26. Zbl0186.51203MR250387
  6. Nagasawa, M. (1993): Schrödinger equations and Diffusion Theory. Birkhäuser Verlag, Basel Boston Berlin. Zbl0780.60003MR1227100
  7. Nagasawa, M. (1996): Quantum theory, theory of Brownian motions, and relativity theory. Chaos, Solitons and Fractals, 7, 631-643. Zbl1080.81539MR1405642
  8. Nagasawa, M. (1997): Time reversal of Markov processes and relativistic quantum theory. Chaos, Solitons and Fractals, 8, 1711-1772. Zbl0935.81040MR1477258
  9. Nagasawa, M., and Tanaka, H. (1998): Stochastic differential equations of pure-jumps in relativistic quantum theory. Chaos, Solitons and Fractals, 10, No 8,1265-1280. Zbl0963.81009MR1697664
  10. Nagasawa, M., and Tanaka, H. (1999): Time dependent subordination and Markov processes with jumps. Sém. de Probabilités, Springer (to appear). Zbl0963.60062MR1768068
  11. Sato, K., (1990): Subordination depending on a parameter. Probability Theory and Mathematical Statistics, Proc. Fifth Vilnius Conf. Vol. 2, 372-382. Zbl0732.60016MR1153891
  12. Skorokhod, A.V. (1965): Studies in the theory of random processes. Addison-Wesley Pub. Co. INC, Reading, Mass. Zbl0146.37701MR185620
  13. Vershik, A., Yor, M., (1995): Multiplicativité du processus gamma et étude asymptotique des lois stables d'indice α, lorsque α tend vers 0. Prepublications du Lab. de probab. de l'université Paris VI, 284 (1995). 
  14. Watanabe, S. (1964): On discontinuous additive functionals and Lévy measures of a Markov process. Japanese J. Math.36, 429-469. Zbl0141.15703MR185675

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.