Laws of the iterated logarithm for the brownian snake

Laurent Serlet

Séminaire de probabilités de Strasbourg (2000)

  • Volume: 34, page 302-312

How to cite

top

Serlet, Laurent. "Laws of the iterated logarithm for the brownian snake." Séminaire de probabilités de Strasbourg 34 (2000): 302-312. <http://eudml.org/doc/114043>.

@article{Serlet2000,
author = {Serlet, Laurent},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian snake; large deviations; law of the iterated logarithm; Borel-Cantelli lemma},
language = {eng},
pages = {302-312},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Laws of the iterated logarithm for the brownian snake},
url = {http://eudml.org/doc/114043},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Serlet, Laurent
TI - Laws of the iterated logarithm for the brownian snake
JO - Séminaire de probabilités de Strasbourg
PY - 2000
PB - Springer - Lecture Notes in Mathematics
VL - 34
SP - 302
EP - 312
LA - eng
KW - Brownian snake; large deviations; law of the iterated logarithm; Borel-Cantelli lemma
UR - http://eudml.org/doc/114043
ER -

References

top
  1. Bl Blumenthal R.M.Excursions of Markov processes. Birkhauser, Boston. Zbl0983.60504MR1138461
  2. CC Csaki E., Csorgo M., Foldes A., Revesz P. (1995) Global Strassen-type theorems for iterated Brownian motions. Stoc. Proc. App.59, 321-341. Zbl0843.60072MR1357659
  3. Lg1 Le Gall J.F. (1993) A class of path-valued Markov processes and its applications to super-processes. Probab. Th. Rel. Fields95, 25-46. Zbl0794.60076MR1207305
  4. Lg2 Le Gall J.F. (1994) A path-valued Markov process and its connections with partial differential equations. Proc. First European Congress of Mathematics, vol. II, p.185-212. Birkhauser, Boston. Zbl0812.60058MR1341844
  5. LP Le Gall J.F., Perkins E.A. (1993) The Hausdorff measure of the support of two dimensional super-Brownian motion. Ann. Probab.23 (4). Zbl0856.60055MR1379165
  6. PS Port S.C., Stone C.J. (1978) Brownian motion and classical potential theory, Academic Press, New-York. Zbl0413.60067
  7. RY Revuz D., Yor M. (1994) Continuous martingales and Brownian motion, second edition. Springer-Verlag, Heidelberg. Zbl0804.60001MR1303781
  8. Se1 Serlet L. (1995) On the Hausdorff measure of multiple points and collision points of super-Brownian motion. Stochastics and Stoc. Rep.54, 169-198. Zbl0857.60045MR1382114
  9. Se2 Serlet L. (1997) A large deviation principle for the Brownian snake. Stoc. proc. appl.67101-115. Zbl0889.60026MR1445046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.