Laws of the iterated logarithm for the brownian snake
Séminaire de probabilités de Strasbourg (2000)
- Volume: 34, page 302-312
Access Full Article
topHow to cite
topSerlet, Laurent. "Laws of the iterated logarithm for the brownian snake." Séminaire de probabilités de Strasbourg 34 (2000): 302-312. <http://eudml.org/doc/114043>.
@article{Serlet2000,
author = {Serlet, Laurent},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian snake; large deviations; law of the iterated logarithm; Borel-Cantelli lemma},
language = {eng},
pages = {302-312},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Laws of the iterated logarithm for the brownian snake},
url = {http://eudml.org/doc/114043},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Serlet, Laurent
TI - Laws of the iterated logarithm for the brownian snake
JO - Séminaire de probabilités de Strasbourg
PY - 2000
PB - Springer - Lecture Notes in Mathematics
VL - 34
SP - 302
EP - 312
LA - eng
KW - Brownian snake; large deviations; law of the iterated logarithm; Borel-Cantelli lemma
UR - http://eudml.org/doc/114043
ER -
References
top- Bl Blumenthal R.M.Excursions of Markov processes. Birkhauser, Boston. Zbl0983.60504MR1138461
- CC Csaki E., Csorgo M., Foldes A., Revesz P. (1995) Global Strassen-type theorems for iterated Brownian motions. Stoc. Proc. App.59, 321-341. Zbl0843.60072MR1357659
- Lg1 Le Gall J.F. (1993) A class of path-valued Markov processes and its applications to super-processes. Probab. Th. Rel. Fields95, 25-46. Zbl0794.60076MR1207305
- Lg2 Le Gall J.F. (1994) A path-valued Markov process and its connections with partial differential equations. Proc. First European Congress of Mathematics, vol. II, p.185-212. Birkhauser, Boston. Zbl0812.60058MR1341844
- LP Le Gall J.F., Perkins E.A. (1993) The Hausdorff measure of the support of two dimensional super-Brownian motion. Ann. Probab.23 (4). Zbl0856.60055MR1379165
- PS Port S.C., Stone C.J. (1978) Brownian motion and classical potential theory, Academic Press, New-York. Zbl0413.60067
- RY Revuz D., Yor M. (1994) Continuous martingales and Brownian motion, second edition. Springer-Verlag, Heidelberg. Zbl0804.60001MR1303781
- Se1 Serlet L. (1995) On the Hausdorff measure of multiple points and collision points of super-Brownian motion. Stochastics and Stoc. Rep.54, 169-198. Zbl0857.60045MR1382114
- Se2 Serlet L. (1997) A large deviation principle for the Brownian snake. Stoc. proc. appl.67101-115. Zbl0889.60026MR1445046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.